
VEE OneLab User’s Guide

Notice
The information contained in this document is subject to change without
notice.

Agilent Technologies makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent Technologies
Inc. shall not be liable for errors contained herein or for any direct, indirect,
special, incidental, or consequential damages in connection with the
furnishing, performance, or use of this material.

This document contains information which is protected by copyright. No
part of this manual may be reproduced in any form or by any means
(including electronic storage and retrieval or translation into another
language) without prior agreement and written consent from Agilent
Technologies Inc., as governed by United States and international copyright
laws.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “Commercial computer
software” as defined in DFAR 252.227-7014 (June 1995), as a “commercial
item” as defined in FAR 2.101(a), or as “Restricted computer software” as
defined in FAR 52.227-19 (June 1987) (or any equivalent agency regulation
or contract clause), whichever is applicable. Use, duplication, or disclosure
of Software is subject to Agilent Technologies’ standard commercial license
terms, and non-DOD Departments and Agencies of the U.S. Government
will receive no greater than Restricted Rights as defined in FAR 52.227-
19(c)(1-2) (June 1987). U.S. Government users will receive no greater than
Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-
7015(b)(2) (November 1995), as applicable in any technical data.

Copyright 2000 Agilent Technologies Inc. All rights reserved.
ii

Trademark Information

Microsoft®, MS-DOS®, Windows®, MS Windows®, and Windows NT®
are U.S. registered trademarks of Microsoft Corporation.

MATLAB® is a registered trademark of The MathWorks, Inc.

UNIX® is a registered trademark of the Open Group.

Printing History

Edition 1 - March 2000 Reflects software version 6.0
 iii

Conventions Used in This Manual
This manual uses the following typographical conventions:

Getting Started Italicized text is used for book titles and for
emphasis.

Dialog Box Bold text is used for the first instance of a word
that is defined in the glossary.

File Computer font represents text that you will see
on the screen, including menu names, features,
buttons, or text that you have to enter.

dir filename In this context, the text in computer font
represents an argument that you type exactly as
shown, and the italicized text represents an
argument that you must replace with an actual
value.

File ⇒ Open The “⇒” is used in a shorthand notation to show
the location of Agilent VEE features in the menu.
For example, “File ⇒ Open” means to select
the File menu and then select Open.

Sml | Med | Lrg Choices in computer font, separated with bars
(|), indicate that you should choose one of the
options.

Press Enter In this context, bold represents a key to press on
the keyboard.

Press Ctrl + O Represents a combination of keys on the
keyboard that you should press at the same time.
iv

Contents
Introduction

Overview of Agilent VEE ..3
Advantages of Using Agilent VEE for Test Development3
Creating Programs in Agilent VEE ...4
Creating Operator Interfaces in Agilent VEE7
Leveraging Existing Test Programs with Agilent VEE9
Controlling Instruments with Agilent VEE...9
Improving Test Capabilities with Agilent VEE10

Installing and Learning About Agilent VEE ..11
Installing Agilent VEE and I/O Libraries..11
Learning about Agilent VEE ...11
Ordering Free Evaluation Software...12

MATLAB Script Overview ..13
Signal Processing Toolbox ..14
About Full-Featured MATLAB ..14

Obtaining Agilent VEE Support ...16
Obtaining Information on the World Wide Web16

Sources of Additional Information for MATLAB..................................17

1. Using the Agilent VEE Development Environment

Overview...21
Interacting with Agilent VEE ...22

Supported Systems ..22
The Mouse and the Menus ..22
Starting Agilent VEE ..23
The Agilent VEE Window ..23
Getting Help ..25

Working with Objects...29
Adding Objects to the Work Area ..29
Changing Object Views...31
Selecting an Object Menu ...32
Moving an Object ..33
Duplicating (or Cloning) an Object ...35
 Contents-1

Copying an Object... 35
Deleting (Cutting) an Object ... 36
Pasting an Object (“Undoing” a Cut) .. 36
Changing the Size of an Object... 37
Changing the Name (Title) of an Object .. 37
Selecting or Deselecting Objects... 38
Selecting Several Objects.. 39
Selecting/Deselecting All Objects... 39
Copying Multiple Objects ... 40
Editing Objects .. 40
Creating Data Lines Between Objects .. 41
Deleting Data Lines Between Objects .. 42
Moving the Entire Work Area... 43
Clearing the Work Area .. 43
Changing Default Preferences... 44

Understanding Pins and Terminals... 46
Adding a Terminal .. 48
Editing Terminal Information ... 49
Deleting a Terminal... 51

Connecting Objects to Make a Program .. 52
Lab 1-1: Display Waveform Program... 52
Running a Program.. 54
Changing Object Properties .. 55
Printing the Screen .. 58
Saving a Program ... 59
Exiting (Quitting) Agilent VEE .. 61
Re-Starting Agilent VEE and Running a Program............................ 62
Managing Multiple Windows in the Workspace............................... 62

How Agilent VEE Programs Work .. 64
Lab 1-2: Viewing Data Flow and Propagation 65
Lab 1-3: Adding a Noise Generator .. 65
Lab 1-4: Adding an Amplitude Input and Real64 Slider 68

Chapter Checklist ... 71
Contents-2

2. Agilent VEE Programming Techniques

Overview...75
General Techniques ..76

Lab 2-1: Creating a UserObject ..76
Lab 2-2: Creating a Dialog Box for User Input82
Lab 2-3: Using Data Files ...85
Lab 2-4: Creating a Panel View (Operator Interface)89
Lab 2-5: Mathematically Processing Data92

Using Data Types ...92
Using Data Shapes ...93
Using the Formula Object ..94

Using Online Help ..97
Using the Help Facility..97
Displaying Help about an Object ..98
Finding the Menu Location for an Object ...98
Other Practice Exercises Using the Help Facility99

Debugging Programs in Agilent VEE ..100
Showing Data Flow ...100
Showing Execution Flow ..101
Examining Data on a Line ...102
Examining Terminals ..103
Using the Alphanumeric Displays for Debugging103
Using Breakpoints ...104
Resolving Errors ..106
Using the Go To Button to Locate an Error106
Following the Order of Events Inside an Object107
Following the Execution Order of Objects in a Program110
Stepping Through a Program...111

Practice Programs ...113
Lab 2-6: Generate a Random Number...113
Lab 2-7: Setting and Getting a Global Variable..............................114

Documenting Agilent VEE Programs ..117
Documenting Objects with Description Dialog Boxes117
Generating Documentation Automatically......................................118

Chapter Checklist..122
 Contents-3

3. Easy Ways to Control Instruments

Overview .. 125
Panel Drivers ... 126
Direct I/O Object ... 126
PC Plug-in Boards with ODAS Driver ... 127
PC Plug-in Boards with I/O Library ... 127
VXIplug&play Drivers.. 128

Configuring an Instrument ... 129
Lab 3-1: Configuring an Instrument without the Instrument Present ...

129
Selecting an Instrument to Use in a Program.................................. 135
Adding the Physical Instrument to the Configuration..................... 137

Using a Panel Driver .. 138
Lab 3-2: Changing Settings on a Panel Driver................................ 138
Moving to Other Panels on the Same Driver 140
Adding Inputs and/or Outputs to a Panel Driver............................. 141
Deleting Data Input or Output Terminals 142
On Your Own .. 142

Using Direct I/O .. 143
Lab 3-3: Using Direct I/O ... 143
Sending a Single Text Command to an Instrument 144
Sending an Expression List to an Instrument.................................. 146
Reading Data From an Instrument ... 147
Uploading and Downloading Instrument States 150

Using PC Plug-in Boards.. 152
Using ODAS Drivers .. 152
Data Translation’s Visual Programming Interface (VPI) 154
Amplicon... 154
ComputerBoards PC Plug-ins ... 155
Meilhaus Electronic ME-DriverSystem.. 157

Using a VXIplug&play Driver ... 158
Lab 3-4: Configuring a VXIPlug&play Driver 158

Other I/O Features .. 163
Chapter Checklist ... 164
Contents-4

4. Analyzing and Displaying Test Data

Overview...167
Agilent VEE Data Shapes and Data Types...168
Agilent VEE Analysis Capabilities ..171
Using Built-In Math Objects ..172

Accessing a Built-in Operator or Function172
Lab 4-1: Calculating Standard Deviation ..173

Creating Expressions with the Formula Object175
Evaluating an Expression with the Formula Object176
Using an Agilent VEE Function in the Formula Object..................177
On Your Own ..179

Using MATLAB Script in Agilent VEE ..181
Including a MATLAB Script Object in Agilent VEE184
Working with Data Types ...185

Displaying Test Data ..188
Customizing Test Data Displays ...190

Displaying a Waveform...190
Changing the X and Y Scales ..191
Zooming in on Part of the Waveform..191
Adding Delta Markers to the Display..192
Changing the Color of the Trace ...193
For Additional Practice..194

Chapter Checklist..195

5. Storing and Retrieving Test Results

Overview...199
Using Arrays to Store Test Results ..200

Lab 5-1: Creating an Array for Test Results201
Lab 5-2: Extracting Values from an Array......................................202

Using the To/From File Objects ..204
Understanding I/O Transactions..205
I/O Transaction Format ...206
Lab 5-3: Using the To/From File Objects208
Sending a Text String to a File ...208
Sending a Time Stamp to a File ..209
Sending a Real Array to a File ...210
Retrieving Data with the From File Object212
 Contents-5

Using Records to Store Mixed Data Types .. 216
Lab 5-4: Using Records... 216
Building a Record.. 217
Getting a Field From a Record.. 219
Setting a Field in a Record .. 221
Unbuilding a Record in a Single Step ... 224

Using DataSets to Store and Retrieve Records 226
Lab 5-5: Using DataSets ... 226
Storing and Retrieving a Record from a DataSet 226

Customizing a Simple Test Database ... 231
Lab 5-6: Using Search and Sort Operations with DataSets 231
Performing a Search Operation With DataSets............................... 231
Creating an Operator Interface for a Search Operation................... 232
Performing a Sort Operation on a Record Field.............................. 238

Chapter Checklist ... 240

6. Creating Reports Easily Using ActiveX

Overview .. 243
ActiveX Automation in Agilent VEE... 244

Listing ActiveX Automation Type Libraries 244
Creating and Using ActiveX Programs with Agilent VEE 245
Performing Operations Using ActiveX Statements 246
Using CreateObject and GetObject ... 247

Sending Agilent VEE Data to MS Excel.. 249
Lab 6-1: Sending Agilent VEE Data to MS Excel.......................... 249

Creating an Agilent VEE to MS Excel Template................................. 257
Lab 6-2: Creating an Agilent VEE to MS Excel Template............. 257
On Your Own .. 259
Extending Capabilities With MS Excel .. 260

Using MS Word for Agilent VEE Reports... 262
Lab 6-3: Using MS Word for Agilent VEE Reports....................... 262

Chapter Checklist ... 269
Contents-6

7. Using Agilent VEE Functions

Overview...273
Using Functions ..274

Defining an Agilent VEE Function ...274
The Differences Between UserObjects and UserFunctions275
Lab 7-1: UserFunction Operations ..276
Creating a UserFunction..276
Editing a UserFunction..279
Calling a UserFunction from an Expression281
Generating a Call to a UserFunction ...283

Chapter Checklist..286

8. Using Operator Interfaces

Overview...289
Key Points Concerning Operator Interfaces ...290

Creating an Operator Interface ..290
Moving Between Panel View and Detail View...............................291
Customizing an Operator Interface ...291

Using Operator Interface Objects ...293
Colors, Fonts, and Indicators...293
Graphic Images..293
Displaying a Control for Operator Input ...295
Displaying a Dialog Box for Operator Input297
Displaying a Toggle Control for the Operator299
Aligning Objects in the Operator Interface300
Creating an Operator Interface for the Keyboard Only...................301
Selecting Screen Colors...303
Displaying a Pop-Up Panel During Execution304

Common Tasks In Creating Operator Interfaces305
Lab 8-1: Using Menus ...305
Lab 8-2: Importing Bitmaps for Panel Backgrounds311
Lab 8-3: Creating a High Impact Warning......................................313
Lab 8-4: Using an ActiveX Control ..318

Chapter Checklist..321
 Contents-7

9. Optimizing Agilent VEE Programs

Overview .. 325
Basic Techniques for Optimizing Programs... 326

Perform Math on Arrays Whenever Possible.................................. 326
Make Objects into Icons Whenever Possible.................................. 327
Reduce the Number of Objects in Programs................................... 328
Other Ways to Optimize Agilent VEE Programs............................ 330

Overview of Compiled Functions ... 332
Benefits of Using Compiled Functions ... 332
Design Considerations in Using Compiled Functions 333
Guidelines in Using Compiled Functions 334

Using Dynamic Link Libraries... 335
Integrating a DLL into an Agilent VEE Program 335
An Example Using a DLL... 337

Agilent VEE Execution Modes .. 341
The Agilent VEE Compiler... 342
Changing the Execution Mode.. 342
Effect of Changing the Execution Mode... 344

Chapter Checklist ... 349

A. Additional Lab Exercises

General Programming Techniques ... 353
Apple Bagger... 353
Testing Numbers ... 356
Collecting Random Numbers .. 360
Random Number Generator .. 362
Using Masks.. 364

Using Strings and Globals .. 368
Manipulating Strings and Globals... 368

Optimizing Techniques .. 370
UserObjects .. 372

Random Noise UserObject.. 372
Agilent VEE UserFunctions ... 375

Using UserFunctions ... 375
Creating Operator Panels and Pop-ups... 381
Working with Files ... 388

Moving Data To and From Files ... 388
Contents-8

Records ...390
Manipulating Records ...390

Glossary

Index
 Contents-9

Contents-10

Figures
Figure I-1. The “Random” Program in ANSI C5
Figure I-2. The Same “Random” Program in VEE6
Figure I-3. Panel View (or Operator Interface) of VEE Program8
Figure I-4. Contacting Product Support in VEE Help Menu..................16
Figure 1-1. The VEE Development Environment23
Figure 1-2. The VEE Welcome Screen in Help25
Figure 1-3. Using the Help Menu ...26
Figure 1-4. VEE Help Contents Tab...27
Figure 1-5. Adding Objects to the Work Area30
Figure 1-6. Adding a Function Generator Object31
Figure 1-7. Object in Open View and Icon View...................................32
Figure 1-8. Selecting an Object Menu ..33
Figure 1-9. Moving an Object ..34
Figure 1-10. Cloning an Object ..35
Figure 1-11. Changing the Size of an Object ...37
Figure 1-12. Changing the Title of an Object...38
Figure 1-13. Selected and Deselected Objects39
Figure 1-14. Multiple Objects during Copying40
Figure 1-15. Creating Data Lines Between Objects42
Figure 1-16. Scroll Bars in Work Area...43
Figure 1-17. Default Preferences Dialog Box ..44
Figure 1-18. Data and Sequence Pins ..46
Figure 1-19. Show Terminals on an Object..47
Figure 1-20. Using Show Terminals Checkbox47
Figure 1-21. Adding a Terminal ...48
Figure 1-22. Obtaining Terminal Information..49
Figure 1-23. Using the Selection Field ...50
Figure 1-24. Delete Terminal Dialog Box..51
Figure 1-25. Creating a Program ..53
Figure 1-26. Running a Program ..54
Figure 1-27. Changing the Function Field to Sine Wave56
Figure 1-28. Highlighting a Frequency Field Number57
Figure 1-29. Example: Changing the Frequency Field to 10 Hz............57
Figure 1-30. Printing the Screen...58
Figure 1-31. The Save File Dialog Box (PC) ...59
Figure 1-32. The Run button on the Tool Bar ..62
Figure 1-33. Multiple windows in the Work Area63
 Contents-11

Figure 1-34. Typical simple-program.vee Display................................. 65
Figure 1-35. Example: Adding a Noise Generator Object 66
Figure 1-36. Function and Object Browser .. 67
Figure 1-37. Example: Adding Input Terminals 68
Figure 1-38. Example: Adding a Real64 Slider Object.......................... 69
Figure 1-39. Displaying the Value on an Output Pin 70
Figure 2-1. UserObject Window .. 77
Figure 2-2. usrobj-program.vee at an Early Stage.................................. 78
Figure 2-3. Creating a UserObject.. 79
Figure 2-4. UserObject Renamed AddNoise.. 81
Figure 2-5. Noisy Cosine Wave ... 82
Figure 2-6. The Int32 Input Configuration Box 83
Figure 2-7. Int32 Input Added to usrobj-program.vee 84
Figure 2-8. Runtime Pop-Up Input Box ... 85
Figure 2-9. Adding a Data File... 86
Figure 2-10. Choosing an I/O Transaction ... 87
Figure 2-11. Adding a To File Object .. 88
Figure 2-12. Adding a From File Object .. 89
Figure 2-13. simple-program.vee ... 90
Figure 2-14. Example: Creating a Panel View....................................... 91
Figure 2-15. Using Data Types .. 93
Figure 2-16. Connecting Data Objects .. 94
Figure 2-17. Creating a Formula Object Program.................................. 95
Figure 2-18. Show Data Flow .. 100
Figure 2-19. Data Flow in simple-program.vee 101
Figure 2-20. Show Execution Flow.. 101
Figure 2-21. Displaying the Value on an Output Pin 102
Figure 2-22. Displaying Information about a Line............................... 103
Figure 2-23. Set Breakpoint(s) ... 104
Figure 2-24. Resume Program (same as the Run Button) 105
Figure 2-25. Clear Breakpoint(s).. 105
Figure 2-26. Pause or Stop a Program.. 105
Figure 2-27. Example Runtime Error Message using Go To............... 107
Figure 2-28. The Order of Events in an Object 108
Figure 2-29. Control Line Used to Execute Custom Title.................... 109
Figure 2-30. Start Objects Executing Separate Threads....................... 110
Figure 2-31. Step Into, Step Over, and Step Out Buttons on the Toolbar..

111
Figure 2-32. The Random Program.. 114
Figure 2-33. Set and Get a Global Variable ... 116
Figure 2-34. The Description Dialog Box.. 118
Contents-12

Figure 2-35. The Beginning of the Documentation File.......................119
Figure 2-36. The Middle of the Documentation File............................120
Figure 2-37. The Remainder of the Documentation File......................121
Figure 3-1. The HP54600A Scope Panel Driver126
Figure 3-2. A Function Generator Direct I/O Object127
Figure 3-3. ODAS Driver Object in a VEE Program127
Figure 3-4. Importing a PC Plug-In Library ...128
Figure 3-5. Calls to a VXIplug&play Driver from VEE128
Figure 3-6. The Instrument Manager Box ..129
Figure 3-7. Instrument Properties Dialog Box130
Figure 3-8. The Advanced Instrument Properties Dialog.....................132
Figure 3-9. The Panel Driver Folder...133
Figure 3-10. Scope Added to List of Instruments.................................135
Figure 3-11. Selecting scope(@(NOT LIVE))136
Figure 3-12. The Function Pop-up Menu on fgen139
Figure 3-13. Sweep Panel in Discrete Component Menu.....................140
Figure 3-14. The Data Input and Output Areas on a Driver141
Figure 3-15. The Direct I/O Configuration Folder143
Figure 3-16. A Direct I/O Object..144
Figure 3-17. The I/O Transaction Dialog Box......................................145
Figure 3-18. A Direct I/O Transaction ...145
Figure 3-19. Direct I/O Setup Using an Input Variable........................147
Figure 3-20. Configuring a READ Transaction149
Figure 3-21. Direct I/O Configured to Read a Measurement149
Figure 3-22. Learn String Configuration for HP54100A151
Figure 3-23. ODAS Driver Entries in Instrument Manager153
Figure 3-24. PC Plug-in Card with ODAS Driver as Formula Object 153
Figure 3-25. Amplicon Data Acquisition Example155
Figure 3-26. VEE Using a ComputerBoards 100 KHz Board..............156
Figure 3-27. Importing the ComputerBoards I/O Library156
Figure 3-28. ME Board Menu in VEE..157
Figure 3-29. Selecting a VXIplug&play Driver159
Figure 3-30. Selecting a Function for a VXIplug&play Driver............160
Figure 3-31. The HPE1412 Edit Function Panel161
Figure 3-32. DC Voltage Function in VXIplug&play Object161
Figure 3-33. Configuration Folder in Edit Function Panel...................162
Figure 3-34. HPE1412 Driver Ready for a DC Reading162
Figure 4-1. A VEE Function in the Function & Object Browser172
Figure 4-2. A MATLAB Function in the Function & Object Browser 173
Figure 4-3. Opening Function and Object Browser from fx Icon174
Figure 4-4. Calculating Standard Deviation ...174
 Contents-13

Figure 4-5. The Formula Object ... 175
Figure 4-6. Evaluating an Expression .. 176
Figure 4-7. Formula Examples Using VEE Functions......................... 177
Figure 4-8. VEE Functions Using One Formula Object 179
Figure 4-9. On Your Own Solution: Ramp and SDEV........................ 180
Figure 4-10. MATLAB Script Object in a VEE Program 182
Figure 4-11. Graph Generated by the Program 183
Figure 4-12. Adding Predefined MATLAB Objects to a VEE Program ...

184
Figure 4-13. Changing Input Terminal Data Type............................... 187
Figure 4-14. Displaying a Waveform... 191
Figure 4-15. Delta Markers on a Waveform Display 193
Figure 5-1. The Collector Creating an Array 202
Figure 5-2. Extracting Array Elements with Expressions 203
Figure 5-3. The To File Object... 205
Figure 5-4. An I/O Transaction Dialog Box... 205
Figure 5-5. The TIME STAMP I/O Transaction Box 210
Figure 5-6. Storing Data Using the To File Object 211
Figure 5-7. Selecting String Format ... 213
Figure 5-8. Retrieving Data Using the From File Object 215
Figure 5-9. Output Terminal Information on a Record 218
Figure 5-10. The AlphaNumeric Properties Box 220
Figure 5-11. Using the Get Field Object .. 221
Figure 5-12. Using the Set Field Object ... 223
Figure 5-13. Using the UnBuild Record Object................................... 225
Figure 5-14. Storing an Array of Records in a DataSet 228
Figure 5-15. Storing and Retrieving Data Using DataSets................... 230
Figure 5-16. A Search Operation with DataSets 232
Figure 5-17. Adding the Test Menu object .. 234
Figure 5-18. Adding a Menu to the Search Operation 236
Figure 5-19. The Operator Interface for the Database 237
Figure 5-20. A Sort Operation on a Record Field 239
Figure 6-1. The ActiveX Automation Reference Box.......................... 245
Figure 6-2. Example of Data Type “Object”.. 246
Figure 6-3. Commands to Set Up Excel Worksheet to Display Test Results

246
Figure 6-4. CreateObject and GetObject .. 248
Figure 6-5. The Globals UserFunction... 250
Figure 6-6. Setting Up the MS Excel Worksheet 251
Figure 6-7. Adding the Title and Data to the Sheet.............................. 254
Figure 6-8. The Results Average Program ... 255
Contents-14

Figure 6-9. Excel Worksheet for “Results Average” Program.............256
Figure 6-10. Excel Worksheet for Array of Test Data258
Figure 6-11. Program for Array of Test Data258
Figure 6-12. Program for On Your Own Exercise259
Figure 6-13. A VEE to MS Excel Program Example...........................260
Figure 6-14. Object Variables...263
Figure 6-15. Beginning of Lab 6-3 Program ..264
Figure 6-16. Adding the ActiveX Statements.......................................265
Figure 6-17. The Complete Program for Report in MS Word267
Figure 6-18. The MS Word Document Created by Lab 6-3.................268
Figure 7-1. The Main and ArrayStats Windows...................................277
Figure 7-2. Configuring the Pins for Call myFunction.........................278
Figure 7-3. Calling the User Function ArrayStats278
Figure 7-4. Editing the UserFunction ArrayStats280
Figure 7-5. After Editing ArrayStats Output to a Record.....................281
Figure 7-6. Calling the ArrayStats User Function282
Figure 7-7. The Generate Menu in a UserFunction284
Figure 7-8. Generating a Call Object ArrayStats(A) from a UserFunction

285
Figure 8-1. Panel View Button and Detail View Button in Title Bar...291
Figure 8-2. A Selection of VEE Indicators...292
Figure 8-3. Logo Used as a Background Picture294
Figure 8-4. Background Picture Used as Tile294
Figure 8-5. A Cropped Image in VEE ..295
Figure 8-6. Controls from Various Data Submenus296
Figure 8-7. The Properties Dialog Box...297
Figure 8-8. A Text Input Box ...298
Figure 8-9. An Example of Automatic Error Checking298
Figure 8-10. A Pop-Up Message Box...298
Figure 8-11. The List Selection Box...299
Figure 8-12. A Pop-Up File Selection Box ..299
Figure 8-13. Switches and Alarms Combined......................................300
Figure 8-14. Configuring Panel Properties...301
Figure 8-15. A Softkey Executing a UserFunction301
Figure 8-16. Configuring the Confirm (OK) Object as a Softkey........302
Figure 8-17. The Default Preferences Dialog Box303
Figure 8-18. Color Selection for Screen Elements304
Figure 8-19. Early Stage in the Dice Program......................................307
Figure 8-20. The Dice Program (Detail View)308
Figure 8-21. The Dice Program (Panel View)......................................310
Figure 8-22. The Bitmap Function ...313
 Contents-15

Figure 8-23. The UserFunction alarm (Detail View) 315
Figure 8-24. The Warning UserFunction (Detail View) 317
Figure 8-25. The Warning Program ... 318
Figure 8-26. Using the ActiveX Control “ProgressBar” 319
Figure 8-27. An ActiveX Control Example Using MSChart 320
Figure 9-1. Calculating Square Roots per Measurement...................... 326
Figure 9-2. Calculating Square Roots using Math Array 327
Figure 9-3. Optimizing Programs by Using Icons................................ 328
Figure 9-4. Function Calls without Optimization................................. 329
Figure 9-5. Function Calls with Optimization...................................... 329
Figure 9-6. Importing a Library of Compiled Functions...................... 335
Figure 9-7. Using Call Object for Compiled Functions 336
Figure 9-8. A Program Using a DLL (MANUAL49) 338
Figure 9-9. The Shared Library Name UserObject 339
Figure 9-10. Execution Mode Display in VEE Status Bar................... 342
Figure 9-11. Default Preferences Button on Toolbar 343
Figure 9-12. Changing the Execution Mode in Default Preferences.... 343
Figure 9-13. Chaos.vee in VEE 3 Mode with Open Displays.............. 345
Figure 9-14. Chaos.vee in VEE 3 Mode with Closed Displays 346
Figure 9-15. Chaos.vee in VEE 4 or Higher Mode with Debugging Dis-

abled .. 347
Figure 9-16. Iterative Math Example in VEE 3 Mode 348
Figure 9-17. Iterative Math Example Using VEE 4 or Higher Mode .. 348
Figure A-1. Apple Bagger, Solution 1.. 354
Figure A-2. Apple Bagger, Solution 2 .. 355
Figure A-3. Testing Numbers (pop-up shown) 357
Figure A-4. Testing Numbers, Step 2... 358
Figure A-5. Testing Numbers, Step 3... 359
Figure A-6. Collecting Random Numbers.. 361
Figure A-7. Random Number Generator, Step 1.................................. 362
Figure A-8. Random Number Generator, Step 2.................................. 363
Figure A-9. The Mask Test, Step 1 .. 365
Figure A-10. Mask Test, Step 2.. 366
Figure A-11. Manipulating Strings and Global Variables.................... 368
Figure A-12. Optimizing VEE Programs, Step 1 370
Figure A-13. Optimizing VEE Programs, Step 2 371
Figure A-14. A Random Noise UserObject ... 373
Figure A-15. The NoiseGen UserObject .. 374
Figure A-16. User Functions, Step 1 .. 376
Figure A-17. User Functions, Step 2 .. 378
Figure A-18. User Functions, Step 3 .. 379
Contents-16

Figure A-19. User Functions, Step 4 ..380
Figure A-20. UserObject to Ask Operator to Input A and B................382
Figure A-21. Panel for Operator to Enter A and B...............................382
Figure A-22. UserObject to Ask Operator Whether to Display A or B384
Figure A-23. Panel for Operator to Choose Whether to Display A or B....

384
Figure A-24. Generate an Error if Operator Does Not Enter a Choice 386
Figure A-25. Moving Data To and From Files.....................................388
Figure A-26. Manipulating Records, Step 1 ...391
Figure A-27. Manipulating Records, Step 2 ...393
Figure A-28. Manipulating Records, Step 3 ...395
 Contents-17

Contents-18

Tables
Table 4-1. Agilent VEE Data Types...168
Table 4-2. Displays ...188
Table 5-1. Types of I/O Transactions ..206
Table 5-2. I/O Transaction Encoding ...207
 Contents-19

Contents-20

Introduction

Introduction

This chapter introduces Agilent VEE and its major features. You will also
learn how to install and learn about VEE, and how to obtain VEE support.
2 Introduction

Overview of Agilent VEE
Overview of Agilent VEE
Agilent VEE is a graphical programming language optimized for building
test and measurement applications, and programs with operator interfaces.
This release of the Agilent VEE product family includes VEE Pro 6.0 for
groups of engineers that need to create complex test and measurement
systems, and VEE OneLab 6.0 for individual engineers and scientists
responsible for design and data acquisition.

Advantages of Using Agilent VEE for Test Development

VEE offers many advantages in test development:

� Increase your productivity dramatically. Customers report reducing their
program development time up to 80%.

� Use VEE in a wide range of applications including functional test, design
verification, calibration, and data acquisition and control.

� Gain instrument I/O flexibility controlling GPIB, VXI, Serial, GPIO, PC
Plug-in cards, and LAN instruments. Use “panel” drivers, VXIplug&play
drivers, ODAS drivers, “direct I/O” over standard interfaces, or imported
libraries from multiple vendors.

� Use ActiveX Automation and Controls on PCs to control other
applications such as MS Word, Excel, and Access that assist with
generating reports, displaying and analyzing data, or putting test results
into a database for future use.

� Increase throughput, build larger programs with ease, and become more
flexible in instrument management. VEE has a compiler; a professional
development environment suited for large, complex programs; and
advanced instrument management capabilities.

� Leverage your investment in textual languages such as C/C++, Visual
Basic, Pascal, Fortran, and Rocky Mountain Basic.
Introduction 3

Overview of Agilent VEE
Creating Programs in Agilent VEE

VEE programs are created by selecting objects from menus and connecting
them together. The result in VEE resembles a data flow diagram, which is
easier to use and understand than traditional lines of code. There is no
laborious edit-compile-link-execute cycle using VEE.

The following two figures compare a simple function programmed first in a
textual language (ANSI C) and then in VEE. In both cases, the function
creates an array of 10 random numbers, finds the maximum value, and
displays the array and maximum value.

Figure I-1 shows the program, called “Random,” in the ANSI C textual
language.
4 Introduction

Overview of Agilent VEE
Figure I-1. The “Random” Program in ANSI C

Figure I-2 shows the same program in VEE.

/* Program to find maximum element in array */

#include <math.h>

main()

{

double num[10],max;

int i;

for (i=0;i<10,i++){

num[i]=(double) rand()/pow(2.0,15.0);

printf("%f/n",num[i];

}

max=num[0];

for {i=1;i<10;i++){

if (num[i]>max)max=num[i];

}

printf("/nmax; %f/n",max);

}

Introduction 5

Overview of Agilent VEE
Figure I-2. The Same “Random” Program in VEE

In VEE, the program is built with program elements called objects. Objects
are the building blocks of a VEE program. They perform various functions
such as I/O operations, analysis, and display. When you view the objects
with all of their connections, as shown in Figure I-2, this is called the detail
view. The detail view is analogous to source code in a textual language.

In VEE, data moves from one object to the next object in a consistent way:
data input on the left, data output on the right, and operational sequence pins
on the top and bottom.

The objects are connected together to form a program. Follow the program
from left to right. In the “Random” program shown in Figure I-2, a random
number is added to the Collector - Create Array object ten times,
creating an array. Then the program finds the maximum value in the array,
and displays the Max Value and the Array Values.

Using VEE, with its modular programming approach, you can reduce the
time it takes to create programs that control instruments, create customized
data displays, and develop operator interfaces. This method of test
development leads to productivity gains much greater than conventional
techniques.
6 Introduction

Overview of Agilent VEE
Note In Figure I-2, some objects are displayed in detail, and some are displayed
with only the name showing. The objects that are displayed in detail are
shown in open view. Open view allows you to see the details of the object.
To save space and increase program execution speed, you can iconize
objects, or reduce them so that only the names are showing.

For example, in Figure I-2, the object labeled Random Number is shown as
an icon. The object labeled Create Array is shown using an open view.
The open view is larger and more detailed. Object views are discussed in
more detail in “Changing Object Views” on page 31 of Chapter 1, “Using
the Agilent VEE Development Environment.”

Creating Operator Interfaces in Agilent VEE

An additional benefit of programming in VEE is that it only takes a few
minutes to create an operator interface.

Using the “Random” program from Figure I-2, the objects that the operator
needs to see are selected and put into a panel view. A panel view shows only
the objects the operator needs to run the program and view the resulting data.
Figure I-3 shows the panel view of the “Random” program in Figure I-2.

Note The program and its operator interface are different views of the same VEE
program. You can go back and forth from one view to the other by clicking
the detail view and panel view buttons in the window title bar in VEE. Any
edits or updates that you make to a program (detail view) are automatically
made to the operator interface (panel view).

For more information about creating an operator interface, refer to “Creating
a Panel View (Operator Interface)” on page 89.
Introduction 7

Overview of Agilent VEE
Figure I-3. Panel View (or Operator Interface) of VEE Program

With VEE, you can perform certain tasks in minutes that might take days in
a textual language.

� Create colorful, intuitive front ends to programs.

� Create operator interfaces that can be used with a keyboard and mouse,
or keyboard input only.

� Choose from a wide assortment of user input and data display features.

� Use pop-up panels to create focus and conserve screen space.

� Use labels, choose colors and fonts, and add beepers, notepads, buttons,
and switches in a variety of formats.

� Use your own or standard off-the-shelf ActiveX Controls (PC only) for
user input or displaying data.
8 Introduction

Overview of Agilent VEE
Leveraging Existing Test Programs with Agilent VEE

On all supported operating systems, VEE provides mechanisms for linking
conventional test programs as well as commercial applications. For example,
you could use VEE to sequence existing tests in Rocky Mountain Basic, C,
C++, Visual Basic, Fortran, or Pascal (or any compiled or interpreted
language on your operating system). VEE also provides a number of
interprocess communication features to share data with commercial
applications such as databases or spreadsheets.

On PCs, VEE supports standard ties to ActiveX Automation and Controls,
and DLLs.

Controlling Instruments with Agilent VEE

VEE provides many options for controlling and communicating with
instruments.

� Use panel drivers (instrument drivers) for over 450 instruments from
different vendors plus all drivers available from various vendors that are
VXIplug&play compatible in the Windows 95, Windows 98, Windows
2000, Windows NT 4.0, or HP-UX frameworks.

� Use VEE’s Direct I/O to send instrument command strings over standard
interfaces such as GPIB (IEEE - 488), GPIO, RS 232, VXI, or
LAN-based instruments for remote testing.

� Control PC plug-in boards from any manufacturer that supplies a
standard ODAS driver, or a Dynamic Link Library with the board.

� Use direct VXI backplane control using embedded PCs or workstations.

� Control a great variety of instrument types with an easy, organized
instrument management capability.
Introduction 9

Overview of Agilent VEE
Improving Test Capabilities with Agilent VEE

The VEE products offer the following features and benefits:

� Reduced development and maintenance time with graphical
programming.

� Integration with conventional languages like C, C++, Visual Basic,
Pascal, Fortran, and RMB.

� Convenient and flexible operator interface capabilities.

� Support for most popular test platforms.

� Use of ActiveX Automation and Controls.

� Agilent Technologies’ excellent array of support options.

� Easy and powerful documentation tools.

� Ease of porting test data to standard spreadsheets and word processors for
reports.

� Interprocess communication tools to link with other applications such as
relational databases or statistical analysis packages (VEE Pro 6.0 only).

� Debugging tools that make the development and maintenance of large,
complex programs efficient (VEE Pro 6.0 only).

� Powerful test executive tools included with the product (VEE Pro 6.0
only).

� Remote test capabilities with VEE's Web monitoring features (VEE Pro
6.0 only).

� Unlimited runtime for distribution of your programs (VEE Pro 6.0 only).

� Low cost site licenses (VEE Pro 6.0 only).
10 Introduction

Installing and Learning About Agilent VEE
Installing and Learning About Agilent VEE
This section gives guidelines to install and learn about VEE, including
installing VEE, learning about VEE, using VEE, and obtaining VEE
support.

Installing Agilent VEE and I/O Libraries

For information on installing Agilent VEE OneLab 6.0 and I/O Libraries,
refer to the installation materials you received with VEE. (The I/O Libraries
are used by VEE to communicate with instruments.)

Learning about Agilent VEE

To learn more about using VEE, you can watch the VEE multimedia
tutorials, use online help, refer to manuals (including this one), and attend
VEE classes.

� VEE Multimedia Tutorials: The VEE Multimedia Tutorials, located in
the Help ⇒ Welcome menu of VEE, are video presentations that
explain many key concepts of VEE. They demonstrate how to use VEE
menus, edit objects, and run programs. Each presentation takes three or
four minutes to complete, and you can watch them as many times as you
like. You can pause the Tutorial, run VEE to try what you have learned,
and then resume the Tutorial.

� VEE Online Help: One way to learn about the new features of VEE is to
select Help ⇒ Contents and Index ⇒ What’s New in Agilent
VEE 6.0. Read Help ⇒ Welcome ⇒ Introduction for an overview
of the VEE product.

There are many other features of online help as well. For more
information, refer to “Getting Help” on page 25, and “Using Online
Help” on page 97.

� VEE Manuals: The manual set for VEE includes this manual, VEE
OneLab User’s Guide, and the VEE OneLab Advanced Techniques
manual.
Introduction 11

Installing and Learning About Agilent VEE
� Agilent VEE Classes: For information about VEE classes, check the Web
site http://www.agilent.com/comms/education.

Note The VEE programs for many of the lab exercises and programming
examples in this manual are included in VEE, under Help ⇒ Open
Example... ⇒ Manual ⇒ UsersGuide.

Ordering Free Evaluation Software

Free evaluation software is available on a CD or by downloading from the
VEE website. To order the Agilent Technologies VEE Evaluation Kit CD,
call (800) 829-4444 in the U.S. or contact Agilent Technologies offices
worldwide at:

http://www.agilent.com/tmo
12 Introduction

MATLAB Script Overview
MATLAB Script Overview

MATLAB® Script is a subset of the standard, full-featured MATLAB from
The MathWorks. It gives users direct access to the core set of MATLAB
functionality, such as advanced mathematics, data analysis, and scientific
and engineering graphics. The MATLAB Script object can be easily
included in any Agilent VEE program.

MATLAB Script includes hundreds of functions for:

� Data analysis and visualization

� Numeric computation, including:

� Linear algebra and matrix computation

� Fourier and statistical analysis

� Differential equation solving

� Trigonometric and fundamental math operations

� Engineering and scientific graphics, such as:

� 2-D and 3-D display, including triangulated and gridded data

� Volume visualization of scalar and vector data

� Quiver, ribbon, scatter, bar, pie, and stem plots
Introduction 13

MATLAB Script Overview
Signal Processing Toolbox

MATLAB Script for VEE also includes a subset of the MATLAB Signal
Processing Toolbox, which is built on a solid foundation of filter design and
spectral analysis techniques. Functions are included for:

� Signal and linear system models

� Analog filter design

� FIR and IIR digital filter design, analysis, and implementation

� Transforms such as FFT and DCT

� Spectrum estimation and statistical signal processing

� Parametric time-series modeling

� Waveform generation

About Full-Featured MATLAB

MATLAB is an integrated technical computing environment that combines
numeric computation, advanced graphics and visualization, and a high-level
programming language. MATLAB includes hundreds of functions for:

� Data analysis and visualization

� Numeric and symbolic computation

� Engineering and scientific graphics

� Modeling, simulation, and prototyping

� Programming, application development, and GUI design

MATLAB is used in a variety of application areas including signal and
image processing, control system design, financial engineering, and medical
research. The open architecture makes it easy to use MATLAB and
14 Introduction

MATLAB Script Overview
companion products to explore data and create custom tools that provide
early insights and competitive advantages.

As a VEE user, you can incorporate the full power of MATLAB and the
Signal Processing Toolbox for applications involving data analysis,
visualization and modeling. By upgrading to the full versions of these
products, you can use a wide range of additional MATLAB features in VEE
applications, such as creating user-defined functions (M-files), and access to
the MATLAB command window, the MATLAB Editor/Debugger, and the
Signal Processing GUI.

Note For more information about using MATLAB Script objects in VEE
programs, refer to “Using MATLAB Script in Agilent VEE” on page 181 of
Chapter 4, “Analyzing and Displaying Test Data.”
Introduction 15

Obtaining Agilent VEE Support
Obtaining Agilent VEE Support
You can obtain VEE support via the Web or by telephone (for startup
assistance).

Obtaining Information on the World Wide Web

The VEE website offers a variety of information, including application
notes, user tips, technical information, and information about VEE partners,
such as PC plug-in board vendors.

� Main VEE Website: http://www.agilent.com/find/vee.

� For Current Support Information: While connected to the network, in
VEE, click Help ⇒ Agilent VEE on the Web ⇒ Support. Figure
I-4 shows how to select support in VEE. Or, in the Web browser, select
http://www.agilent.com/find/vee and click “Support”.

Figure I-4. Contacting Product Support in VEE Help Menu

� For Complimentary Startup Assistance: see phone support information in
online help. In VEE, click Help ⇒ Contents and Index and choose
Agilent VEE Support.
16 Introduction

Sources of Additional Information for MATLAB
Sources of Additional Information for
MATLAB
For complete, detailed information on using the MATLAB Script object,
refer to the MATLAB Script Help Desk. In VEE, select Help ⇒ MATLAB
Script ⇒ Help Desk. The MATLAB Help Desk will appear in a Web
browser.

For further information about MATLAB, MATLAB Toolboxes, and other
products from The MathWorks, visit www.mathworks.com or call
508-647-7000.

Other sources of information include:

� Complete MATLAB documentation:
www.mathworks.com/access/helpdesk/help/helpdesk.shtml

� MATLAB Upgrade Offer: A special offer is available for VEE Pro 6.0
and VEE OneLab 6.0 users. To find out more, go to
www.mathworks.com/veeupgrade

� MATLAB Product Information: www.mathworks.com/products

� MATLAB Technical Assistance: www.mathworks.com/support

� MathWorks Store: www.mathworks.com/store

� MathWorks Home Page: www.mathworks.com

� Usenet Newsgroup: The comp.soft-sys.matlab news group
provides a forum for professionals and students who use MATLAB and
have questions or comments about it and its associated products.
Introduction 17

Sources of Additional Information for MATLAB
18 Introduction

1
Using the Agilent VEE Development
Environment

Using the Agilent VEE Development Environment
Using the Agilent VEE Development
Environment

In this chapter you will learn about:

� Supported systems

� How to use the Help system

� Starting VEE

� The VEE window

� Working with objects

� Managing the workspace

� Selecting menu items

� Pins and terminals on VEE objects

� Connecting objects to make programs

� Creating, running, printing, saving, and opening programs

� How VEE programs work

Average time to complete: 1.5 hours
20 Chapter 1

Using the Agilent VEE Development Environment
Overview
Overview
In this chapter, you will learn how to start VEE, how to use menus, and how
to work with objects. You will learn about pins and terminals in VEE. You
will connect objects together to build a simple VEE program, and learn how
VEE programs work.
Chapter 1 21

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
Interacting with Agilent VEE
This section explains how to use the VEE graphical programming language,
including a list of systems supported, how the mouse and menus work, how
to get help, how to start VEE, and how to work in the VEE window.

Supported Systems

This version of VEE, version 6.0, is supported on the following systems:

� Windows 95, Windows 98, Windows 2000, and Windows NT 4.0 on a
PC.

The Mouse and the Menus

You are probably familiar with the computer’s mouse- and menu-driven
interface: the pull-down menus, toolbars, and dialog boxes that you control
with the mouse and keyboard. VEE uses your computer’s interface. In the
instructions about using the mouse to operate menus, icons, buttons, and
objects, the common techniques are as follows:

� To “click” an item, place the mouse pointer on the desired item and
quickly press and release the left mouse button.

� To “double-click” an item, place the mouse pointer on the desired item
and click the left mouse button twice, in rapid succession.

� To “drag” an item, place the mouse pointer on a desired item, hold the left
mouse button down, and move the item to the appropriate location. Then,
release the mouse button.

Note The right mouse button is used less frequently. You will be advised if you are
to click the right mouse button. If your mouse has a middle button, you will
not use it for VEE.
22 Chapter 1

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
Starting Agilent VEE

The Agilent VEE Window

After you have installed and started VEE, you will see the VEE window
shown in Figure 1-1.

Figure 1-1. The VEE Development Environment

Windows Click Start ⇒ Programs ⇒ Agilent VEE OneLab
6.0.

Menu Bar

Status Bar

Tool Bar

Title Bar

Work Area
Chapter 1 23

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
These items describe the parts of the VEE window.

Note This book focuses on VEE version 6.0. If you have an earlier version of
VEE (to check your version, click Help ⇒ About VEE OneLab),
inexpensive upgrades are available. If you have a support contract for
software updates, you will receive the new version automatically.

Title bar The top line in the window contains the VEE icon, the
window name, and the minimize, maximize, and close
buttons. Move the window by dragging the title bar. Click
the VEE icon to get the window’s menu.

Menu bar The second line contains menu items, each of which
provides VEE commands or objects.

Toolbar The third line contains icons, or buttons, that provide direct
access (or “shortcuts”) to the most commonly used menu
commands. (Place the mouse pointer over a button and
VEE displays its function.)

Work area A region in a programming (edit) window such as Main,
UserObject, or UserFunction in which you place
objects and wire them together.

Main
window

A window that contains a work area in which you develop
and edit VEE programs. There can be other
programming/editing windows, such as UserObject.

Status bar The bottom line displays messages about VEE status,
including two status indicators in the right corner. The
indicators (from left to right) show:
The execution mode
MOD appears when the program has been modified
24 Chapter 1

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
Getting Help

VEE provides an online Help system for the VEE environment, and online
Help for individual objects and topics. In addition, you can get help in the
documentation that came with the computer and its operating system. The
PC online Help includes information about topics such as:

� Choosing commands on the menu bar
� Selecting and dismissing menu items
� Using toolbars
� Understanding title bars and status bars
� Clicking icons and buttons
� Working with dialog boxes
� Working with various types of windows
� Using online help

To begin, you may want to start with the Help ⇒ Welcome screen, where
you can access the VEE Multimedia Tutorials. The Welcome screen is
shown in Figure 1-2.

Figure 1-2. The VEE Welcome Screen in Help
Chapter 1 25

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
VEE online Help is designed for your operating system. Click Help and
the menu shown in Figure 1-3 appears. Help includes contents and index, the
Welcome menu (where the Tutorials are located), instrument drivers, Web
site information, examples, and version number.

Although you will not need to use VEE documentation to complete this
self-paced training, consult the product documentation for more detailed
information on any particular feature or concept. Use the Help system to
search for VEE topics you need to locate. The Help system can “jump” to
related topics.

Figure 1-3. Using the Help Menu

Select Contents and Index to start VEE Help as shown in Figure 1-4.
26 Chapter 1

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
Figure 1-4. VEE Help Contents Tab

The Help Contents tab contains the following topics.

What’s New in Agilent
VEE 6.0

Explains new features.

How Do I... Provides “how to” information for common
tasks.

Tell Me About... Explains VEE concepts.

Guide to Agilent VEE
Example Programs

Summarizes example programs shipped with
VEE.

Reference Provides reference information for all
functions and objects.

About Agilent VEE
OneLab Support

Provides information about getting support
for VEE.
Chapter 1 27

Using the Agilent VEE Development Environment
Interacting with Agilent VEE
Note As a shortcut to get help on a selected object and on dialog boxes, press F1
on your keyboard. In addition, Click Help in an object menu to get specific
information on that object.

For more information about using specific online Help features as you
develop programs, refer to “Using the Help Facility” on page 97.
28 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
Working with Objects
A VEE program consists of connected objects. To create a program, select
objects from VEE menus, such as Flow, Data, and Display. Connect the
objects via lines that attach to the object pins. (For more information about
pins, refer to “Understanding Pins and Terminals” on page 46.). Create a
program with a group of connected objects.

This section describes how to select and use objects in a program.

1. Start VEE. Click Start ⇒ Programs ⇒ Agilent VEE OneLab
6.0 in Windows.

2. Follow the instructions in this section to experiment with objects.

Note Subsequent exercises assume you have started the VEE software. Refer back
to this page or to the section called “Starting Agilent VEE” on page 23 for
instructions on starting VEE.

Adding Objects to the Work Area

Pull down an appropriate menu, click the desired object, drag the object to
an appropriate location in the work area, and click (the outline will disappear
and the object will appear).

1. For example, to add a Function Generator object to the work area,
select Device ⇒ Virtual Source ⇒ Function Generator in the
menu bar as shown in Figure 1-5.

Note The arrow to the right of Virtual Source indicates a submenu. Three dots
after a menu item indicate that one or more dialog boxes will follow. For
example, File ⇒ Save As... operates this way.
Chapter 1 29

Using the Agilent VEE Development Environment
Working with Objects
Figure 1-5. Adding Objects to the Work Area

An outline of the object appears in the work area.

2. Move the Function Generator to the center of the work area, and
click to place the object. The Function Generator appears as shown
in Figure 1-6.
30 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
Figure 1-6. Adding a Function Generator Object

Having placed an object in the work area, you can move the object by
dragging its title bar, just as you move a window.

Note Throughout the rest of this manual, a shorthand notation is used to explain
instructions. For example, selecting the Function Generator object is
condensed into the following format:

Device ⇒ Virtual Source ⇒ Function Generator

Changing Object Views

VEE displays objects either in “icon view” or “open view,” as shown in
Figure 1-7.
Chapter 1 31

Using the Agilent VEE Development Environment
Working with Objects

Figure 1-7. Object in Open View and Icon View

The iconic view conserves space in the work area and makes programs more
readable. The open view provides more detail and allows you to edit the
properties and settings of an object.

1. To switch from an open to iconic view, click the Minimize button (the
box on the right end of the object’s title bar).

2. To return to an open view, double-click the object icon view (anywhere
on the object).

Note The object menu also has Minimize and Restore selections. To display
the object menu, click on the Object Menu button on the left end of the title
bar, or right click anywhere on the object.

Not all objects have the same structure or parts, but you can edit objects in
their open views and save space in their icon views.

Selecting an Object Menu

Each VEE object has an object menu that lets you perform actions on the
object, such as Clone, Size, Cut, Move, and Minimize. Most objects have
similar attributes, but there are differences, depending on the functionality of
the object. See online help for the specific object from the object menu.

Open View Icon View

Minimize button

Object
Menu
button
32 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
1. To select the object menu, click once on the object menu button. (All
object menus open the same way.) The object menu appears, as shown in
Figure 1-8. (Do not double-click the object menu button. That is the
shortcut for deleting the object.)

2. Now you can click one of the object menu choices to perform the action
you desire. Or, to dismiss the menu, click an empty area outside the
menu.

Figure 1-8. Selecting an Object Menu

Shortcut: You can also select the object menu by placing the mouse pointer
anywhere on the object body and clicking the right mouse button. This
works for both the open and icon views.

Moving an Object

1. To move the Function Generator object, click Move in the object
menu, then click and hold the left mouse button. An outline of the object
appears.

2. Move the outline to the new location while continuing to hold the mouse
button down, as shown in Figure 1-9. Release the mouse button, and the
object moves to the new location.

Object Menu Button

Object Menu
Chapter 1 33

Using the Agilent VEE Development Environment
Working with Objects
Figure 1-9. Moving an Object

You can also move objects as follows:

� Click the title area of the open view of an object and drag the object to a
new location.

� Except for buttons, entry fields, pins, terminals, or the four corners
(which resize the object), click any part of an open view object and drag
the object to a new location.

� Click any part of an icon view object except near the four corners (which
resize the object), and drag the icon to a new location.

Note “Object Location Information,” located on the status bar (at the bottom of
the VEE window) gives the X and Y position (in pixels) of the upper-left
corner of the outline relative to the upper-left corner of the workspace. To
view an object’s exact location, left click on an object to select it and hold
the left mouse button down. The location is displayed in the status bar. Use
this information when you need to place an object in an exact position.
34 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
Duplicating (or Cloning) an Object

The Clone operation creates a duplicate object exactly, including any
changes you have made such as sizing or renaming. Cloning is a shortcut for
cutting and pasting.

1. Open the object menu and select Clone. An outline of the duplicated
object appears.

2. Move the outline to the desired location, and click to place the object.
The cloned object appears, while the original object remains. In Figure
1-10, the Function Generator has already been cloned once, and the
object menu has the command selected to clone it again.

Figure 1-10. Cloning an Object

Copying an Object

This action copies an object to the clipboard, so you could Paste it to VEE or
another application such as MS Paint or MS Word.

1. Click on an object to highlight it, then click Edit ⇒ Copy.

-OR-

Click on an object to highlight it, then press Ctrl-C.
Chapter 1 35

Using the Agilent VEE Development Environment
Working with Objects
Deleting (Cutting) an Object

To delete (or Cut) an object from the work area, go to the object menu for the
object you want to delete and click Cut. For example, go to the object menu
for the Function Generator and click Cut. The object disappears from
the work area, but it is saved in the cut buffer.

1. Open the object menu, and select Cut.

-OR-

Select the object (click on it) and press Ctrl-X.

-OR-

Place the mouse cursor over the object menu and double-click.

Note Be careful, as it is easy to accidentally delete an object by double-clicking its
object menu button. If you do delete an object by accident, use the Paste
toolbar button (or Edit ⇒ Paste) to recover the object and all connections
to it.

Pasting an Object (“Undoing” a Cut)

To paste a copied or deleted (cut) object back into the work area, follow
these steps.

1. After an object has been copied or deleted, click Edit ⇒ Paste. An
outline of the object appears. Place the object and click to release it.

-OR-

Press Ctrl-V.

Note If the object had lines attached, these connections will be maintained. This
action operates like an “undo” in other programs. It's not called “undo”
because it doesn't apply to all VEE programming actions. (It also works on
groups of objects that have been deleted.)
36 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
Changing the Size of an Object

1. Place the mouse pointer over any of the four corners of the object until
you see a sizing arrow, then click-and-drag to the desired size. Release to
resize. Figure 1-11 shows an object being resized with the sizing arrow.

-OR-

Open the object menu and click Size. The mouse pointer becomes a
“bottom-right-corner” bracket. Move the bracket to the desired position
of the lower-right corner and click to resize.

Figure 1-11. Changing the Size of an Object

Changing the Name (Title) of an Object

1. Open the object menu and select Properties... A Properties dialog
box appears with the current title highlighted, as shown in Figure 1-12.

2. Type the new title and click OK. The new title appears in the title area. If
you minimize the object, the new title appears in the icon.
Chapter 1 37

Using the Agilent VEE Development Environment
Working with Objects
-OR-

1. Double-click the object title bar to go directly to the Properties dialog
box.

2. Type in the new title and click OK.

Note You can save time by using standard keyboard and mouse editing
techniques. For example, in the Properties dialog box Title field, if you
click at the extreme left edge of the edit area the cursor will appear there.
You can then add new text without deleting the existing title.

Figure 1-12. Changing the Title of an Object

Selecting or Deselecting Objects

1. To select an object, click on the object and a shadow appears behind it.
For example, in Figure 1-13, the For Count object is selected.

2. To deselect an object, move the mouse pointer over any open area and
click. The shadow disappears. For example, in Figure 1-13, the Formula
object is not selected.
38 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
Figure 1-13. Selected and Deselected Objects

Note The word “select” is also used to indicate choosing a menu item, but the
context makes the meaning obvious.

Selecting Several Objects

If you click to select an object, only one object is selected. If you click again
to select another object, the previous object is deselected and its shadow
disappears. To select multiple objects when you want to perform an
operation on all of them at once, such as Cut, follow these steps:

1. Press and hold down the Ctrl button as you click on different objects.
Release the Ctrl button after you have highlighted all the objects you
want to select.

-OR-

Press Ctrl, then click-and-drag a rectangle around the objects to be
selected. The selected objects become shadowed.

Selecting/Deselecting All Objects

1. To select all objects, click Edit ⇒ Select All. (Or press Ctrl-A.)

2. To deselect all objects, click on an open area in the window.
Chapter 1 39

Using the Agilent VEE Development Environment
Working with Objects
Copying Multiple Objects

1. Copy the selected objects by placing the cursor on an object. Press and
hold Ctrl while using the left mouse button to drag the multiple objects
(outlines) to a desired location. A new instance of each object appears in
the desired location.

-OR-

Or, use Edit ⇒ Copy to copy the selected objects to the cut buffer. Click
Paste (in the Edit menu or on the toolbar), move the objects (outlines)
to a desired location, and click the left mouse button. Figure 1-14 shows
objects during copying.

Figure 1-14. Multiple Objects during Copying

Note In VEE for Windows, objects that you cut or copy are also placed on the
Clipboard. You can paste them into other Windows applications that support
the Windows Clipboard.

Editing Objects

There are several ways to edit objects in VEE. Different editing menus
display different choices. Choose an editing menu or icon as follows:

1. Click Edit on the VEE menu bar to display the Edit menu, and select
the operation you want. The commands in the Edit menu are the same
for all of VEE.
40 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
-OR-

Click on an icon on the VEE toolbar. The VEE toolbar contains icons for
frequently used editing commands such as Cut, Copy, and Paste.

-OR-

Open the object’s object menu by clicking on it, and select the operation
you want. Object menus include editing operations specific to an object,
such as the Properties menu, that are not located in the main Edit
menu. The commands in the object menu also vary depending on the type
of object. For example, compare the object menus for the Device ⇒
Formula and I/O ⇒ To ⇒ File objects. The two menus contain
different choices that are specific to the object.

-OR-

Place the mouse pointer anywhere on blank work area space and click the
right mouse button. A pop-up Edit menu appears.

Note Inactive menu items appear in a different shade than active items (they are
“grayed out”). For instance, the Cut, Copy, and Clone operations in the
Edit menu appear in a different shade from active menu items until an
object is highlighted in the work area.

Creating Data Lines Between Objects

1. Click on or just outside the data output pin of one object, then click on
the data input pin of another, as shown in Figure 1-15. (A line appears
behind the pointer as you move from one pin to the other.)

2. Release the cursor and VEE draws a line between the two objects. Notice
that if you reposition the objects, VEE maintains the line between them.

Note For more information on pins, see “Understanding Pins and Terminals” on
page 46.
Chapter 1 41

Using the Agilent VEE Development Environment
Working with Objects
Figure 1-15. Creating Data Lines Between Objects

Deleting Data Lines Between Objects

1. Press Shift-Ctrl and click the line you want to delete.

-OR-

Select Edit ⇒ Delete Line and click the line you want to delete.

Data Output Pin

Data Input Pin
42 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
Moving the Entire Work Area

1. (Make sure there is at least one icon in the work area.) Place the mouse
pointer anywhere on the background of the work area, press and hold the
left mouse button, and move the work area in any direction.

Note Scroll bars appear if your program is larger than the work area, as shown in
Figure 1-16.

Note If you click near a terminal, a line or “wire” may appear. If this happens,
move the pointer to an open area and double-click.

Figure 1-16. Scroll Bars in Work Area

Clearing the Work Area

1. Click Edit ⇒ Select All and then click the Cut button on the toolbar.
This cuts all objects in the active window to the Cut buffer.

-OR-

Vertical
Scroll Bar

Horizontal Scroll Bar
Chapter 1 43

Using the Agilent VEE Development Environment
Working with Objects
Select File ⇒ New, or click the New button on the toolbar. VEE asks
you if you want to save changes.

-OR-

Clear individual objects by clicking an object to make it active, and then
clicking the Cut button on the toolbar.

Changing Default Preferences

The Default Preferences dialog box changes the default settings in the
VEE environment.

1. Click the Default Preferences button on the toolbar.

-OR-

Click File ⇒ Default Preferences. The Default Preferences
dialog box appears, as shown in Figure 1-17.

Figure 1-17. Default Preferences Dialog Box
44 Chapter 1

Using the Agilent VEE Development Environment
Working with Objects
This dialog box has tabs that let you select options to edit.

For more information, select Help ⇒ Contents and Index from the
VEE menu bar. Then, browse How Do I..., Tell Me About..., or
Reference.

General The default tab when the Default Preferences
dialog box appears (shown previously). You can change
the values of the displayed parameters; for example,
Environment and Execution Mode.

Colors Lets you customize the colors in the VEE environment.

Fonts Lets you customize the fonts in the VEE environment.

Number Lets you change the default number format.

Printing Lets you set the values of the parameters for a printer.
Chapter 1 45

Using the Agilent VEE Development Environment
Understanding Pins and Terminals
Understanding Pins and Terminals
A VEE program consists of the objects in the work area and the lines that
connect them. The lines that connect VEE objects are connected between
object pins. Each object has several pins, as shown in Figure 1-18. Figure
1-18 uses the Formula object as an example. You can use any object.

.

Figure 1-18. Data and Sequence Pins

Connect the data input and output pins to carry data between objects. By
default, the pins execute from top to bottom. The sequence pin connections
are optional. If connected, they will dictate an execution order.

Note For more information, refer to “Following the Order of Events Inside an
Object” on page 107.

Data Input Pin The pin (or pins) on the left-hand side of an object.

Data Output Pin The pin (or pins) on the right-hand side of an object.

Sequence
Input Pin

The pin on the top of an object.

Sequence
Output Pin

The pin on the bottom of an object.

Sequence Input Pin

Sequence Output Pin

Data Input Pin Data Output Pin
46 Chapter 1

Using the Agilent VEE Development Environment
Understanding Pins and Terminals
In an object’s open view, the data input and output pins appear as input and
output terminals. (If the object is in icon view, double-click it to switch to
open view.) The terminals carry detailed information such as the name of the
terminal, and the type and value of the data being transmitted. The terminal
labels are visible only in the open view, and only if the Show Terminals
option is turned on for that object (see Properties... in the object’s menu).

For example, Figure 1-19 includes two Formula objects. The Formula
object on the left shows the terminal labels A and Result. The Formula
object on the right has Show Terminals turned off, and the labels are not
visible.

Figure 1-19. Show Terminals on an Object

To turn Show Terminals ON or OFF, select Properties from the object
menu. The properties dialog box displays a checkbox in front of Show
Terminals (see Figure 1-20).

Figure 1-20. Using Show Terminals Checkbox

Show terminals
is turned on

Show terminals
is turned off
Chapter 1 47

Using the Agilent VEE Development Environment
Understanding Pins and Terminals
Click the checkbox to turn Show Terminals OFF. Click the checkbox
again to turn Show Terminals back on. Click OK after you have made a
selection.

Adding a Terminal

You can add terminals to an object. For example, you can add a second data
input terminal to the Formula object.

1. Open the object menu and select Add Terminal ⇒ Data Input.

-OR-

With Show Terminals turned on, you can place the mouse pointer in
the “terminal area” (the left margin of the open view object) and press
Ctrl+A (press the Ctrl and A keys simultaneously).

Figure 1-21 shows the Formula object menu open to add a data input
terminal, and another Formula object that has a second terminal already
added. The new terminal is labeled B. If the data inputs are tied to particular
functions, as with instrument drivers, you will be given a menu of these
functions. Otherwise, the terminals will be named A, B, C... .

Figure 1-21. Adding a Terminal
48 Chapter 1

Using the Agilent VEE Development Environment
Understanding Pins and Terminals
Editing Terminal Information

To obtain information about a terminal, double-click the label area. For
example, double-clicking B causes the dialog box in Figure 1-22 to appear.

Figure 1-22. Obtaining Terminal Information

You can now edit the terminal. The dialog box has three kinds of fields:

entry field A field with a white background, but no arrow. It
becomes a type-in field when you click it. For example,
you can click B in the Name field and rename the
terminal.

status field A field with a gray background that cannot be edited.
For example, the Mode field cannot be edited.

selection field A field with a white background that has an arrow on
its right-hand side. Clicking the field or its arrow
displays a drop-down list. For example, if you click
Any (or the arrow) in the Required Type field, you
can select another data type from the list by clicking the
list as shown in Figure 1-23.
Chapter 1 49

Using the Agilent VEE Development Environment
Understanding Pins and Terminals
Figure 1-23. Using the Selection Field

If you select a data type other than Any for a data input terminal, only the
specified type of data or data that can be converted to that type will be
accepted by the terminal. Most of the time it is best to leave the Required
Type and Required Shape fields set to Any. For more information, select
Help ⇒ Contents and Index from the VEE menu bar. Then, browse
How Do I..., Tell Me About..., or Reference.
50 Chapter 1

Using the Agilent VEE Development Environment
Understanding Pins and Terminals
Deleting a Terminal

1. Open the object menu and select Delete Terminal ⇒ Input... or
Delete Terminal ⇒ Output, choose the input or output to delete, and
click OK. For example, Figure 1-24 shows the dialog box that appears
when you choose Delete Terminal ⇒ Input....

-OR-

Place the mouse pointer over the terminal and press CTRL-D.

Figure 1-24. Delete Terminal Dialog Box
Chapter 1 51

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
Connecting Objects to Make a Program
This section introduces VEE programs. In Lab 1-1, you create a VEE
program, print the VEE screen, and save the program to a file.

Lab 1-1: Display Waveform Program

A VEE program consists of VEE objects connected in an executable object
diagram. The following program displays a waveform.

(If VEE is running, clear the workspace by clicking the New button on the
toolbar, or use File ⇒ New. Otherwise, start VEE and continue.)

1. Document the program. Select Display ⇒ Note Pad and place it at
the top and center of the work area. Click on the editing area to get a
cursor, then enter:

Display Waveform generates a cosine waveform and sends
it to a real time display.

You may have to size the Note Pad, depending on the screen. To size an
object, open the object menu, select Size, move the sizing arrow cursor
to a corner of the object and drag. You can also click and drag any corner
of the object.)

2. Add the Function Generator object. Select Device ⇒ Virtual
Source ⇒ Function Generator, position the outline on the left side
of the work area, and click to place the object. Edit the frequency to 100
by clicking in the Frequency field and typing 100.

3. Add the Waveform (Time) object. Select Display ⇒ Waveform
(Time) and place the object to the right side of the work area as shown
in Figure 1-25.
52 Chapter 1

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
Figure 1-25. Creating a Program

In Figure 1-25, the Func label on the Function Generator object
denotes a data output pin, and the Trace1 label on the
Waveform(Time) object denotes a data input pin. In VEE programs,
you connect the data pins among the objects, and this determines the flow
of the program.

4. Complete the program by connecting the data output pin on the
Function Generator (next to Func on the right side) to the data input
pin on the Waveform (Time) display (next to Trace1 on the left side).
To do the connecting, move the cursor to one of the pins.

The cursor shape changes when it is near a pin where a connection is
allowed. Click the left mouse button, move the mouse cursor to the other
pin, and click again. A line is automatically routed between the two pins
and the program is complete.

Try moving one of the objects by dragging on its title bar. (Do not drag a
pin or terminal, or a line will appear.) The line automatically reroutes to
the logical path between the two objects.
Chapter 1 53

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
If the lines appear to be scrambled, use Edit ⇒ Clean Up Lines to
reroute the lines in the program.

Running a Program

5. Continuing with the same exercise, click the Run button on the toolbar to
run the program, or use Debug ⇒ Run. The program displays a 100 Hz
Cosine wave in the Waveform (Time) display as shown in Figure 1-26.
(Your object might have a different frequency, which is not important to
the example.)

Figure 1-26. Running a Program

In addition to the Run button on the toolbar, you can use the Stop, Pause,
and Step buttons on the toolbar to control the program. If you pause a
running program, use the Resume button (same as the Run button) to
resume. You can use the Step Into button on the toolbar to run a program
one object at a time.
54 Chapter 1

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
When instructed to run the program, click the Run button on the toolbar, or
press Ctrl+G. Other keyboard shortcuts include the following:

Changing Object Properties

You have seen how to change some properties of an object by selecting its
object menu ⇒ Properties. You can also change the more common
properties of an object directly in its open view. You may have noticed that
the Function Generator object has two kinds of fields. A field with an
arrow on its right-hand side is a selection field.

6. Continuing with the same example, click Cosine (or the arrow) in the
Function field. A drop-down list of selections appears. Click Sine to
select the Sine function as shown in Figure 1-27, noticing that the
Function field has changed from Cosine to Sine.

Pause Ctrl+P

Resume Ctrl+G

Step Into Ctrl+T
Chapter 1 55

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
Figure 1-27. Changing the Function Field to Sine Wave

Some fields in dialog boxes do not have arrows. These are entry fields,
which become type-in fields when you click them. Just click a field and a
cursor appears. You can use standard keyboard and mouse editing
techniques to move the cursor and enter a desired value.

7. Click the Frequency field to the right of the value 100, and while
holding the mouse button down, move the mouse to the left to highlight
the last 0, as shown in Figure 1-28.
56 Chapter 1

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
Figure 1-28. Highlighting a Frequency Field Number

8. Press Delete to delete the last 0, changing the Frequency value to 10.
Run the program. It should look like Figure 1-29.

Figure 1-29. Example: Changing the Frequency Field to 10 Hz

The displayed waveform is now a 10 Hz sine wave.
Chapter 1 57

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
You may want to try changing a few object parameters as follows:

� Click Deg (or the arrow) in the Function Generator object and
change the phase units to Rad. Next, click the Phase value field and
enter the value PI. Run the program and note the phase shift in the
displayed waveform. Then, change the Phase value back to 0 and the
units back to Deg.

� The y-axis limits of the Waveform (Time) object are preset to -1
through 1. Click the y-axis name Mag to open a dialog that lets you
change the settings. Click the fields for Maximum and Minimum to
change the limits to 2 and -2. You will see the waveform displayed
within the new limits. To change similar parameters for the x-axis scale,
click Time.

Printing the Screen

9. Continuing with the same example, to print the screen, select File ⇒
Print Screen. On Windows, the dialog box in Figure 1-30 appears.

Figure 1-30. Printing the Screen

When you click OK, VEE prints the screen on the default printer named in
the dialog box. You can select another printer, change the print range, and
enter the number of copies. Click the Properties button for more
58 Chapter 1

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
selections. Different print drivers may use different dialog boxes. For
further information about using Windows dialog boxes, see Microsoft
Windows Help.

Shortcut: Click the Print Screen button on the toolbar to print the screen
directly.

Saving a Program

You can save a program at any time. (You can save whatever is in the work
area, whether it is a complete program or not).

10.Continuing with the same example, select File ⇒ Save As... and
complete the dialog box.

A dialog box entitled Save File appears. Figure 1-31 shows the PC
format for this box.

Figure 1-31. The Save File Dialog Box (PC)

11.By default, VEE for Windows saves files in the VEE Programs
sub-directory in your My Document directory. To save the current
program, type in the name simple-program in the File name field
Chapter 1 59

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
and click Save. If you do not type it in, VEE automatically adds the
.vee extension to the file name.

Note In VEE for Windows, you can use the long file names allowed by Windows
95, Windows 98, Windows 2000, and Windows NT 4.0.

In the PC Save File dialog box, you can make changes to the different
fields as follows:

Save in You can change the directory or drive by opening
the drop-down menu. Double-click a folder to open
it.

File name Type in a file name of your choice.

Save as type VEE programs are normally saved with the .vee
extension, but you can change the file type if you
wish. If you type a file name without the extension,
the .vee is automatically added.

Save colors and
fonts with
program

(Optional) If you have changed program colors and
fonts, using the Default Preferences menu,
and you want others who load the program to get the
colors and fonts you selected (rather than their
defaults), click to check this item.

When checked, VEE saves the changes you have
made to the default configuration as part of the
program.

Save I/O
configuration
with program

(Optional) If you have configured an instrument in
the Instrument Manager, and you want others
who load the program to get the instruments you
configured rather than their defaults, it is
recommended that you check this item.

When checked, VEE saves the I/O configuration as
part of the program.
60 Chapter 1

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
Note If you are using the evaluation kit software, VEE will only let you save
programs to one file, EVAL.VEE, so just write over this file for the different
examples.

Tip: A handy way to replace a typed entry in a dialog box is to click and drag
the mouse pointer over the entry to highlight it. Or you can highlight the
entry by double-clicking the input field. Then you can type the correction
and click OK.

Note To re-save the program to the same file name, click the Save button or press
Ctrl+S at any time (File ⇒ Save). It is a good idea to save files frequently
while you are developing a program. To save a program that you have edited
to a different file name, press Ctrl+W or File ⇒ Save As.

Exiting (Quitting) Agilent VEE

12.Select File ⇒ Exit to close the VEE application window.

Shortcut: Press Ctrl-E to exit VEE, or click on the x button at the right end of
the title bar.

You will probably not need to use the following techniques, but if VEE stops
responding to the mouse or keyboard, follow these instructions:

In Windows 95
and Windows 98

Press Ctrl-Alt-Delete and a window is displayed
with various options. Follow the instructions in the
window for MS Windows, or click End Task.

In Windows NT
4.0 and Windows
2000

Press Ctrl-Alt-Delete and click the Task Manager
button. Select VEE in the Applications list and click
End Task.
Chapter 1 61

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
Re-Starting Agilent VEE and Running a Program

1. PC: In Windows, click Start ⇒ Programs ⇒ Agilent VEE
OneLab 6.0.

2. Select File ⇒ Open and complete the Open File dialog box.

The format is the same as for the Save File dialog box. Note that in
VEE for Windows, the default directory for user programs is the
VEE_USER directory, unless you specified something else during
installation. VEE opens the program in the Main window.

3. Click the Run button. It looks like a small arrowhead, and is located on
the tool bar below the Debug menu as shown in Figure 1-32.

Figure 1-32. The Run button on the Tool Bar

Note PC: The command vee.exe -r filename starts VEE in Windows and
automatically run the program specified by filename. For example, you
could create an icon on the Windows desktop and set its Properties ⇒
Shortcut to run a particular VEE program. An operator could then
double-click an icon on the desktop to start VEE and run a program
automatically. For more information, refer to the Windows Help information
about commands and prompt paths.

Managing Multiple Windows in the Workspace

Most of the discussion so far has focused on the work area in the Main
window. However, large VEE programs can contain multiple windows
inside of the Main window. For example, a program may contain objects that
you define, such as a UserObjects and UserFunctions. (You can think

Run Button
62 Chapter 1

Using the Agilent VEE Development Environment
Connecting Objects to Make a Program
of UserObjects and UserFunctions as subroutines or subprograms to
the main program. UserObjects and UserFunctions are discussed in
more detail in the section “Creating a UserObject” on page 76 in Chapter 2,
“Agilent VEE Programming Techniques.”) They are mentioned here to
show how VEE helps you manage programs that have multiple windows.

Figure 1-33 shows a program with four windows. Each window has an icon
(which provides menu commands), a title, and three buttons; minimize,
maximize, and close. Maximizing a window makes it occupy the available
area in the VEE workspace. Minimizing a window makes its icon appear
along the bottom of the VEE workspace. Closing a window removes it from
the workspace. VEE highlights the working window title bar.

Figure 1-33. Multiple windows in the Work Area

Note If you close the Main window in VEE, you can display the Main window
again by selecting View ⇒ Main.

Main
Window

UserObject
Window,
shown open

UserObject,
icon view

UserObject,
minimized

Highlighted
Title Bar
Chapter 1 63

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
How Agilent VEE Programs Work
In VEE, the general flow of execution through a program is called
propagation. Propagation through a program is not determined by the
geographic locations of the objects in the program, but rather by the way the
objects are connected. Propagation is primarily determined by data flow,
which, in turn, is determined by how the data input and output pins of the
objects are connected.

Note In other programming languages such as C, BASIC, or Pascal, the order in
which program statements execute is determined by a set of sequence and
selection rules. Generally, statements execute in their order of appearance in
the program unless certain statements cause execution to branch to another
statement or thread of code.

The rules of data flow in a VEE program are as follows:

� Data flows from left to right through an object. This means that on all
objects with data pins, the left data pins are inputs and the right data pins
are outputs.

� All of the data input pins in an object must be connected. Otherwise, an
error occurs when the program runs.

� An object will not execute until all of its data input pins have received
new data.

� An object finishes executing only after all connected and appropriate
data output pins have been activated.

In VEE, you can change the order of execution by using sequence input and
output pins. However, you do not normally need to use sequence pins except
for special cases. It is generally best to avoid using the sequence pins. If
possible, let data flow control the execution of the program.
64 Chapter 1

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
Lab 1-2: Viewing Data Flow and Propagation

To see how data flow works, open the program you created earlier. Open the
program simple-program.vee by clicking the Open button on the
toolbar. (The program simple-program.vee is described in the section
called “Display Waveform Program” on page 52.) Now run the program. It
should appear as shown in Figure 1-34, although you may have different
values for parameters.

Figure 1-34. Typical simple-program.vee Display

The data output pin of the Function Generator object is connected to the
data input pin of the Waveform (Time) object. When you run the program,
the Waveform (Time) object will not execute until it receives data from
the Function Generator object. This is a simple example of data flow.

Lab 1-3: Adding a Noise Generator

Add a “noisy sine wave” by adding a Noise Generator object to
simple-program.vee, as shown in Figure 1-35.
Chapter 1 65

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
Figure 1-35. Example: Adding a Noise Generator Object

Note The VEE programs for many of the lab exercises and programming
examples in this manual are included in VEE, under Help ⇒ Open
Example... ⇒ Manual ⇒ UsersGuide.

1. Delete the line connecting the Function Generator and Waveform
(Time) objects in the original program. Click the Delete Line button on
the toolbar and then click the line. Or, press and hold Shift+Ctrl and click
the line.

2. Minimize the Function Generator to its icon.

3. Add the Noise Generator object (Device ⇒ Virtual Source ⇒
Noise Generator).

4. Add the A+B object, using Device ⇒ Function & Object Browser.

The Function & Object Browser is shown in Figure 1-36. For
Type, select Operators. For Category, select Arithmetic. For
Operators, select +.) Click Create Formula and place the object in
the work area between the Function Generator and the Waveform
(Time) object. Minimize the A+B object.
66 Chapter 1

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
Figure 1-36. Function and Object Browser

5. Connect the input and output pins as shown in Figure 1-35.

6. Run the program.

Notice that the A+B object does not execute until the Function
Generator and the Noise Generator objects execute. However, it
does not matter whether the Function Generator or the Noise
Generator executes first, because the result is the same.

Once both of the A+B input data pins receive data, the A+B object
executes, summing the two signals and outputting the result to the
Waveform (Time) object.

Note The data flow in a VEE program determines its execution.
Chapter 1 67

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
To see the order of execution, turn on the Debug commands Show
Execution Flow and Show Data Flow, or click their respective buttons
on the toolbar. Run the program again. Each object highlights when it
executes and a small, square marker moves down the lines to show data
flow.

Note Show Execution Flow and Show Data Flow can be enabled together or
individually by clicking their toolbar buttons or their commands in the
Debug menu. Normally, you should turn these commands off because they
slow down the program.

Lab 1-4: Adding an Amplitude Input and Real64 Slider

Add an amplitude input and a Real64 slider to simple-program.vee.

1. Click on the object menu or press Ctrl+A with the mouse pointer in the
“terminal area” at the left side of the Noise Generator. The dialog box
appears for you to add an input, as shown in Figure 1-37.

Figure 1-37. Example: Adding Input Terminals

2. Select Amplitude by clicking OK—an Amplitude input terminal
appears.

Now that the Noise Generator object has an amplitude input pin, you
can input this data as a real number. VEE provides an object that makes
this easy, called a Real64 Slider, which is located in the Data menu.
(You could also use the Real64 Constant object or a Real64 Knob.)
68 Chapter 1

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
3. Add a Real64 Slider object (Data ⇒ Continuous ⇒ Real64
Slider) and connect its data output pin to the Amplitude terminal, as
shown in Figure 1-38. Run the program.

Figure 1-38. Example: Adding a Real64 Slider Object

Try changing the amplitude of the noise, by dragging the slide control on the
Real64 Slider object. The amplitude of the noise does not change until
you run the program. The noise component of the displayed waveform
depends on the Real64 Slider output value.

Again, data flow determines the order of execution. The Noise
Generator cannot execute until the Real64 Slider executes. The A+B
object cannot execute until both the Function Generator and the Noise
Generator execute, but it does not matter which one executes first. Finally,
the Waveform (Time) object executes only after the A+B object has
executed.
Chapter 1 69

Using the Agilent VEE Development Environment
How Agilent VEE Programs Work
Note You can display the value of an output by using the mouse to hover over the
line. For example, hovering over the line from the Real64 Slider object
to the Noise Generator displays a value of 0.401. Notice that the value
on the line (0.401) matches the value shown on the Real64 Slider, as
shown in Figure 1-39. (Note that the objects are shown in iconized view.)

Figure 1-39. Displaying the Value on an Output Pin

4. Re-save the program to simple-program.vee. You will add some
more features to it in the next chapter.
70 Chapter 1

Using the Agilent VEE Development Environment
Chapter Checklist
Chapter Checklist
You should now be able to do any of the following tasks. Review topics as
needed, before going on to the next chapter.

� Look up on-line help documentation from the main menu bar and from
the object menus.

� Start VEE.

� Identify the main menu bar, toolbar buttons, work area, and status bar.

� Select menu items from the main menu and object menus.

� Perform the following operations on an object: moving, renaming,
iconizing, expanding, sizing, selecting, deselecting, deleting, cloning,
etc.

� Move the work area, clear the work area, and manage multiple windows.

� Identify data and sequence pins on an object and explain their purpose.

� Examine terminals and change their names.

� Connect objects to create a program to simulate waveform data.

� Create, run, print and save a program.

� Exit VEE, and then reopen a program.

� Explain how data flows through a VEE program.
Chapter 1 71

Using the Agilent VEE Development Environment
Chapter Checklist
72 Chapter 1

2

Agilent VEE Programming Techniques

Agilent VEE Programming Techniques

In this chapter you will learn about:

� Creating a UserObject

� Adding a dialog box for user input

� Using data files

� Creating panel views (an operator interface)

� Mathematically processing data

� Communicating with instruments

� Documenting a program

� Using debugging tools

Average time to complete: 2 hours
74 Chapter 2

Agilent VEE Programming Techniques
Overview
Overview
In this chapter, you will learn selected VEE programming techniques to help
you build your own programs. For example, VEE allows you to create
customized objects called UserObjects. You can also create interfaces for
operators to use that show only the necessary parts of the program. These are
displayed in the Panel view of the program.

You can write data from VEE to a file, and read data from a file into VEE.
Data files and their associated I/O transactions can be used for many
purposes, including communicating with instruments, files, strings, the
operating system, interfaces, other programs, Rocky Mountain Basic, and
printers.

VEE supports many data types and provides extensive mathematical
processing capabilities. There are multiple ways for you to use VEE to
communicate with instruments. VEE also provides powerful debugging
tools to debug any problems in programs.
Chapter 2 75

Agilent VEE Programming Techniques
General Techniques
General Techniques
Inside the Main VEE program, you can create logical groups of objects,
called UserObjects. A UserObject object (called UserObject
hereafter) is created by placing a logical group of objects in a UserObject
window. Inside the UserObject window, you connect inputs and outputs in
the same way as the main program. The UserObject itself is connected to
other objects in the main program with inputs and outputs, like any other
object.

The idea in developing a UserObject is to create a unique context that
performs a useful purpose within the main program. Besides conserving
space in the main work area, you can make the program more
understandable by giving it structure.

A VEE program can contain many UserObjects nested within the Main
program. Each UserObject has an icon view which resides in the Main
window. To associate the icon views of the UserObjects in the main
program with their associated UserObject windows, name UserObjects
in their edit windows, which also names them in their associated icon view.
For example, if you name a UserObject AddNoise, its icon window in
the Main program and the title bar on the UserObject will both read
AddNoise. The following exercise teaches you how to create a
UserObject.

Lab 2-1: Creating a UserObject

There are a couple of ways to create a UserObject in a VEE program:

� Select Device ⇒ UserObject from the menu bar to bring up an empty
UserObject icon in the Main window, and add objects to it. If you
double-click the UserObject icon, it is displayed in open view, as
shown in Figure 2-1.

� Select objects within a program and then create a UserObject from
them, by selecting the objects and clicking Edit ⇒ Create
UserObject.
76 Chapter 2

Agilent VEE Programming Techniques
General Techniques

Figure 2-1. UserObject Window

Once you have created a UserObject, it is part of the main program. The
UserObject window can be displayed as an icon, in open view, or
minimized at the bottom of the screen as follows:

� Close the window by clicking the close button, and the UserObject is
displayed as an icon in the main window.

� Maximize the window by clicking its maximize button, and the
UserObject window will occupy the entire available area in the VEE
workspace.

� Minimize the window by clicking its minimize button. The minimized
UserObject is displayed along the bottom of the VEE workspace.

Note The icon view of the UserObject always resides in the Main window, and
you can connect its pins to other objects in the Main window.

Now, you will create a UserObject for a program.

1. Open the program (simple-program.vee) you created in “Adding an
Amplitude Input and Real64 Slider” on page 68. The program should
appear in the main work area.
Chapter 2 77

Agilent VEE Programming Techniques
General Techniques
2. Remove the Real64 Slider from the program. (It is not used in this
exercise.) Click to open the Real64 Slider Object Menu, and select
Cut, or double-click on the Real64 Slider Object Menu button.

Note If you run the program again now, with the Real64 Slider object
removed and the input pin still on the Noise Generator, you will get a
VEE error message that the input pin Amplitude on the Noise
Generator is not connected. Remember, all input pins must be connected
for a VEE program to run.

3. In the Noise Generator object, click the Object Menu button or
click the right button over the object to open the object menu. Select
Delete Terminal ⇒ Input, and in the dialog box for Choose an
input to delete with Amplitude highlighted, click OK.

4. Rename the program by choosing File ⇒ Save As... and type in the
new name usrobj-program1.vee.

5. Then, minimize the Noise Generator object and rearrange the objects
as shown Figure 2-2.

Figure 2-2. usrobj-program.vee at an Early Stage
78 Chapter 2

Agilent VEE Programming Techniques
General Techniques
6. Select the Noise Generator and A+B objects, using the shortcut
Ctrl+left mouse button. Click Edit ⇒ Create UserObject. A dialog
box appears labeled Create UserObject. (You could rename the
object by typing in a new name if you wish. For now, click OK to create
the UserObject.)

The UserObject will contain the Noise Generator and A+B objects
in the UserObject edit window, and will be automatically created in the
Main window with the appropriate input and output pins and connections
as shown in Figure 2-3.

Tip: Position the icons in the upper left of the UserObject by simply
pressing the Home button on the keyboard.

Figure 2-3. Creating a UserObject
Chapter 2 79

Agilent VEE Programming Techniques
General Techniques
Note Rearranging the positions of the objects before executing Create
UserObject is one of convenience. If you do not collect the objects to be
included into one area, the UserObject will size itself to encompass all the
selected objects. You can then rearrange and resize the work area of the
UserObject and move the UserObject to an appropriate place in the
work area. However, the cleanup is easier if you place the objects logically
beforehand.

Note You can use Edit ⇒ Clean Up Lines to clean up the line routing within
a program. This command is context dependent. To clean up the lines for the
UserObject, it must be the active window. Click the UserObject
window, then, use Edit ⇒ Clean Up Lines.

Tip: Creating a UserObject in its edit window and then using the icon
view of the UserObject lets you save screen space.

7. To help you keep track of the UserObject, change the title from
UserObject to AddNoise. Double-click the title bar and enter the new
title in the properties dialog box. Figure 2-4 shows how this makes the
program easier to follow.

Tip: To get to any object’s Properties dialog box quickly, just
double-click its title bar.
80 Chapter 2

Agilent VEE Programming Techniques
General Techniques
Figure 2-4. UserObject Renamed AddNoise

8. Click the Run button to display the noisy cosine wave as shown in Figure
2-5. Note that AddNoise is minimized, and appears in icon form at the
bottom of the work space. To minimize AddNoise, click on the minimize
button in its title bar, shown as the underline symbol (_).
Chapter 2 81

Agilent VEE Programming Techniques
General Techniques
Figure 2-5. Noisy Cosine Wave

The key to effective UserObjects is to make sure they serve a logical
purpose within the program. This unique object is not just a space saving
device, but rather a way of structuring a program. UserObjects help you
use “top-down” design in VEE programs. VEE also includes an object called
a UserFunction, which is a re-usable code module. For more information
about UserObjects and UserFunctions, refer to Chapter 7, “Using
Agilent VEE Functions,” on page 271.

For more information about UserObjects, select Help ⇒ Contents and
Index from the VEE menu bar. Then, browse How Do I..., Tell Me
About..., or Reference.

You will continue with this example in the following section. However, if
you want to quit now, save the program as usrobj-program3.vee.

Lab 2-2: Creating a Dialog Box for User Input

If it is not already open, open the program usrobj-program3.vee.

In the Data ⇒ Dialog Box submenu are six choices for dialog: Text
Input, Int32 Input, and Real64 Input, as well as Message Box,
List Box, and File Name Selection boxes. In each case for text,
82 Chapter 2

Agilent VEE Programming Techniques
General Techniques
integer, and real input, a dialog box helps you configure the prompt or label,
default value, value constraints, and error message. Once you include one of
these dialog boxes, a pop-up input box will appear when the program is run.

1. Select Data ⇒ Dialog Box ⇒ Int32 Input and place it to the left
of the Function Generator. Change the Prompt/Label field to
Enter Frequency:. (Remember to click and drag over the field to
highlight it first.) Change the Default Value to 100.

Tip: You can also double-click an input field to highlight an entry.

2. Change the Value Constraints to 1 on the low end and to 193 on the
high end. Change the error message to reflect these new values, as shown
in Figure 2-6. Finally, iconize the Int32 Input object.

Figure 2-6. The Int32 Input Configuration Box

3. Open the Object Menu for the Function Generator, and choose
Add Terminal ⇒ Data Input. In the dialog box for Select input
to add, choose Frequency and click OK.

4. Connect the top output pin of the Int32 Input object to the input pin
on the Function Generator. Notice that Frequency can only be
changed through the input pin now, and you can no longer edit the
Frequency input field. The program should look like Figure 2-7.
Chapter 2 83

Agilent VEE Programming Techniques
General Techniques
Figure 2-7. Int32 Input Added to usrobj-program.vee

5. Run the program. The input box for Int32 Input appears, with the
instruction Enter Frequency:. Try running the program with different
frequencies in the input box. See Figure 2-8, shown at run-time with the
pop-up input box. Simply click and drag the pop-up box to control where
it appears.
84 Chapter 2

Agilent VEE Programming Techniques
General Techniques
Figure 2-8. Runtime Pop-Up Input Box

You will get an error message box if you enter frequencies above 193.
Notice that you get the exact error message that you configured.

You will continue with this example in the following section. However, if
you want to quit now, save the program as usrobj1-program4.vee.

Note The VEE programs for many of the lab exercises and programming
examples in this manual are included in VEE, under Help ⇒ Open
Example... ⇒ Manual ⇒ UsersGuide.

Lab 2-3: Using Data Files

You can write data from VEE to a data file and read the data in a file into
VEE by including the To File and From File objects in the program.
For example, add a To File object to the detail view of the program that
you have been building.

If it is not already open, open the program usrobj-program4.vee.

1. Select I/O ⇒ To ⇒ File and place it in the Main work area.
Chapter 2 85

Agilent VEE Programming Techniques
General Techniques
2. Change the default filename, myFile, to wavedata.

If there is no check mark to the left of Clear File At PreRun &
Open, then click on the small input box. To File defaults to appending
data to the existing file. In this case, however, you want to clear the file
each time you run the program. The To File object should now look
like Figure 2-9.

Figure 2-9. Adding a Data File

3. Double-click on the area labeled Double-Click to Add
Transaction to write the data. The dialog box in Figure 2-10 appears.
Click the TEXT field (or its arrow) to show the drop-down list of data
types and click CONTAINER. Click OK. Notice that when you click OK in
the I/O Transaction dialog, an input pin a is automatically added to
the To File object.

Examine Help in the To File object menu to see the other options for
the transaction besides WRITE CONTAINER. Transactions are discussed
in more detail in an appendix in the VEE OneLab Advanced Techniques
manual and in Chapter 5, “Storing and Retrieving Test Results.”
86 Chapter 2

Agilent VEE Programming Techniques
General Techniques
Figure 2-10. Choosing an I/O Transaction

4. Connect the data output pin of the AddNoise UserObject to the data
input pin of To File. The program should now look like Figure 2-11.

Note You can connect one data output pin to several data input pins.
Chapter 2 87

Agilent VEE Programming Techniques
General Techniques
Figure 2-11. Adding a To File Object

5. Click the Run button on the tool bar again to test the program. The
program now displays the noisy cosine wave output by the AddNoise
UserObject and writes a container of waveform data to the file
wavedata.

Double-click the To File object to get the open view, then double-click
the input terminal a to examine its contents. You should see an array of
256 points.

Add a From File object to the program to read the data back.

6. Select I/O ⇒ From ⇒ File and place it in the Main work area. Add
a read transaction to READ CONTAINER x and change the file name to
wavedata (the procedure is the same as for To File). Then, delete the
line between AddNoise and the Waveform (Time) object, and connect
88 Chapter 2

Agilent VEE Programming Techniques
General Techniques
the objects as shown in Figure 2-12. The sequence line between To File
and From File ensures the data is written to the file before it is read.

7. Run the program. It should similar to Figure 2-12. Save the program as
usrobj-program.vee.

Figure 2-12. Adding a From File Object

Lab 2-4: Creating a Panel View (Operator Interface)

After you develop a program, you may want to create an operator interface.
To do so, create a panel view of the program. This exercise uses the
program you created in “Viewing Data Flow and Propagation” on page 65.

1. Open the program simple-program.vee. The program should look
like Figure 2-13.
Chapter 2 89

Agilent VEE Programming Techniques
General Techniques
Figure 2-13. simple-program.vee

2. Select the objects that you want to appear in the panel view, which acts
as the operator interface. Press and hold Ctrl while clicking on all the
objects you want to select. (Make sure no object is accidentally selected.)
In this case, select the Real64 Slider and Waveform (Time)
objects. They will each now have a shadow to indicate they are selected.

3. Click the Add to Panel button on the toolbar to add the selected
objects to the panel (or use Edit ⇒ Add To Panel). A panel view
appears, showing the two objects that you added to the panel.

You can size and move the objects in the panel view to appropriate
locations to create a panel similar to the one shown Figure 2-14.
90 Chapter 2

Agilent VEE Programming Techniques
General Techniques
Figure 2-14. Example: Creating a Panel View

4. Press the To Detail button in the upper left Main window title bar to go
to the detail view. Click the To Panel button to return to the panel view.

The detail view is the normal window in which you edit a program. You
can move, resize, or delete objects in the panel view independently from
the detail view. The detail view is used to develop a program and the
panel view is used to provide an operator interface.

5. Save the program as simple-program_with_panel.vee.

You can practice making some changes to the panel view as follows:

� To change colors on the panel, select Properties from the Main
window object menu in panel view. Then choose Colors, click the
Panel View ⇒ Background: button, and select the color you want.

� To change colors or fonts on any object, just double-click its title bar to
get the Properties box. Then click either the Colors or Fonts tab
and make the changes you want.
Chapter 2 91

Agilent VEE Programming Techniques
General Techniques
� To give a raised appearance to objects in the Panel view, open the
Properties box for that object, open the Appearance folder by
clicking on its tab, and select Raised under Border.

� To change the name of the Panel view, open the main Properties
dialog box and name the panel view whatever you wish. The name you
enter will be displayed when the program executes.

Lab 2-5: Mathematically Processing Data

VEE provides extensive built-in mathematical capabilities and data type
support, as well as all the data and signal processing power of MATLAB.
For more details, refer to the VEE OneLab Advanced Techniques manual.

Using Data Types VEE supports several data types, including text, integer and real numbers,
and several types of complex and coordinate numbers. You have already
seen how the A+B object can add two waveforms together in earlier
examples. Mathematical operators, such as addition (+), can act on several
data types and can even act on mixed data types.

For example, to create the following program clear the Main window, place
the following objects in the Main window, and connect them as shown,
noting the following information.

1. Select File ⇒ New to clear the work area.

2. Add a Real64 Constant object by selecting Data ⇒ Constant ⇒
Real64.

3. Add a Complex Constant object by selecting Data ⇒ Constant ⇒
Complex.

4. Add an A+B object. Select Device ⇒ Function & Object Browser
to get the Function & Object Browser. Then, select Type:
Operators; Category: Arithmetic; Operators: +. Click
Create Formula to create the object.

5. Add an AlphaNumeric object by selecting Display ⇒
AlphaNumeric. Connect the objects as shown in Figure 2-15. Type in
92 Chapter 2

Agilent VEE Programming Techniques
General Techniques
the value 1.53 in the data entry field of the Real64 Constant object
and the complex value (2,1) in the Complex object. Run the program
and you should get the result shown in Figure 2-15.

Figure 2-15. Using Data Types

VEE automatically converts the data as needed and then performs the
addition in the A+B object. The real value 1.53 is converted to the complex
value (1.53,0), which is then added to the complex value (2,1). The
result, (3.53,1) (a complex number), is displayed in the AlphaNumeric
object.

Note Normally, VEE automatically handles all data type conversions. For more
information, select Help ⇒ Contents and Index from the VEE menu
bar. Then, browse How Do I..., Tell Me About..., or Reference.

Using Data Shapes VEE supports a variety of data shapes, such as scalars and arrays. Unlike
most programming languages, VEE objects can operate on an entire array,
rather than on only one element.

The following program creates a one-dimensional, ten-element array,
calculates the median of the 10 values, and then displays the median value.

1. Select File ⇒ New to clear the work area.

2. Add a For Range object, by selecting Flow ⇒ Repeat ⇒ For Range.
Chapter 2 93

Agilent VEE Programming Techniques
General Techniques
3. Add a Sliding Collector object, by selecting Data ⇒ Sliding
Collector.

4. Add a median(x) object. Select Device ⇒ Function & Object
Browser. Then, select Type: Built-in Functions; Category:
Probability & Statistics; Functions: median and click
Create Formula.

Shortcut: You can display the Function & Object Browser by
clicking the fx button on the toolbar.

5. Add an AlphaNumeric object, by selecting Display ⇒
AlphaNumeric. Connect the objects as shown in Figure 2-16. Run the
program. If you have not changed any of the inputs on the objects, you
should see the result displayed in Figure 2-16.

Figure 2-16. Connecting Data Objects

Using the Formula
Object

VEE provides mathematical operators and functions which are documented
in the Reference part of online help. Select Help ⇒ Contents and
Index. Then, select Reference and browse the items as desired.

The predefined operator and function objects are available via Device
⇒ Function & Object Browser (or fx on the toolbar). You select them
from the Function & Object Browser by clicking entities in three lists:
Type:, Category:, and Functions:. Click Create Formula to create
the object.

Besides using predefined operators and functions, you can create any valid
VEE mathematical expression within the Formula object, which is found
under the Device menu. In this section, you will create a program using a
Formula object. To begin, clear the Main window and follow these steps.
94 Chapter 2

Agilent VEE Programming Techniques
General Techniques
1. Add the Function Generator object to the Main window and modify
it to produce a 100 Hz sine wave. Select Device ⇒ Virtual Source
⇒ Function Generator.

2. Select Device ⇒ Formula to add the Formula object to the Main
window. Add a second input (B) to the object by putting the mouse
pointer in the input terminal area and clicking Ctrl+A.

3. Type the mathematical expression abs(A)+B in the entry field.

4. Select Data ⇒ Constant ⇒ Real64 to add a Real64 Constant
object to the Main window. Type in the value 0.5.

5. Select Display ⇒ Waveform (Time) and set the y-axis scale to -2
through 2. Set Automatic Scaling to Off. To get the dialog box for
these parameters, click Mag.

6. Connect the objects as shown in Figure 2-17. Run the program.

Figure 2-17. Creating a Formula Object Program
Chapter 2 95

Agilent VEE Programming Techniques
General Techniques
When you run the program, the Formula object takes the waveform input
A and the real value B, and adds B to the absolute value of A. In effect, the
expression abs(A)+B “rectifies” the sine wave and adds a “dc offset”. You
could have produced the same effect by using the A+B and abs(x) objects,
but it is easier to read an expression in a Formula object. (This also saves
space.)

Try double-clicking the input and output terminals of the Formula object.
Note that the real scalar on input B is added to each element of the waveform
data (a one-dimensional array) on input A, and the resulting waveform is
output on the Result terminal.

Note To augment VEE’s extensive math capability, there are hundreds more
mathematical functions available through MATLAB Script integration.
Browse through these functions in the Function & Object Browser.
For more information about using MATLAB functions, refer to “Using
MATLAB Script in Agilent VEE” on page 181 of Chapter 4, “Analyzing and
Displaying Test Data.”.
96 Chapter 2

Agilent VEE Programming Techniques
Using Online Help
Using Online Help
Now that you have created a few simple programs, here are some ways to
teach yourself more about VEE.

1. First, run the Multimedia Tutorials located in the Help ⇒ Welcome
menu. The tutorials demonstrate many of the main features of VEE. They
will help bring you up to speed quickly. The tutorials display screen
demonstrations of VEE programs being built and run, and describe what
you are seeing. The tutorials also introduce key concepts for using VEE
effectively.

2. Once you become familiar with VEE, look for more information in the
Help entries in the object menus. You can experiment with the objects
until you understand how they work. If you need to know more about an
object, the object menus give you the most specific information. Consult
them first.

3. To use the Help contents, index, or search capabilities, open Help on the
main VEE menu bar.

Note To review how to open the main Help facility and a listing of the Help
contents, refer to “Getting Help” on page 25 of Chapter 1, “Using the
Agilent VEE Development Environment.”

Using the Help Facility

Online Help provides information on the following topics:

� All menu items, as well as shortcuts for most of them

� Instrument driver information

� Frequently performed tasks and many example programs

� Definition of VEE terms

� Using the help facility
Chapter 2 97

Agilent VEE Programming Techniques
Using Online Help
� VEE version

You can browse, use the keyword index, use hyperlinks to related topics, or
even do a search. There are many Help features available in VEE that you
can use as you develop programs.

Note VEE also includes other helpful features for developing and debugging
programs, such as line probe. For more information, refer to “Debugging
Programs in Agilent VEE” on page 100.

Displaying Help about an Object

To get help on an object, click on the object menu button and select Help.

� Select Flow ⇒ Repeat ⇒ For Count to create a For Count object.
Click on object menu and select Help. The Help topic appears
describing For Count.

� Select Device ⇒ Formula to create a Formula object. Click on the
object menu and select Help. The Help topic appears describing the
particular formula displayed in the Formula object.

� Select Device ⇒ Function & Object Browser. Select any
combination of choices and click on Help. The Help topic appears for
the particular object that is selected.

Finding the Menu Location for an Object

To find the location for an object in the menus, and to display the
information about that object, select Help ⇒ Contents and Index,
click on the Index tab, type in the name of the object, and click Display.

For example, select Help ⇒ Contents and Index, click on the Index
tab, and type in Collector. Click Display to display the Help topic for
the Collector object.
98 Chapter 2

Agilent VEE Programming Techniques
Using Online Help
Other Practice Exercises Using the Help Facility

� Look up the short-cut to delete an object.

Select Help ⇒ Contents and Index ⇒ How Do I... ⇒ Use
the Keyboard Shortcuts ⇒ Editing Programs ⇒ To Cut an
Object or Text.

� Look up the word “terminal.”

Select Help ⇒ Contents ⇒ Reference ⇒ Glossary ⇒
Terminal.

� Look up the VEE version number.

Select Help ⇒ About VEE OneLab.

� Find out what is new in this version of Agilent VEE.

Select Help ⇒ Contents and Index ⇒ What’s New in Agilent
VEE 6.0.
Chapter 2 99

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Debugging Programs in Agilent VEE
This exercise uses the program you created in “Creating a Panel View
(Operator Interface)” on page 89. Select File ⇒ Open, highlight
simple-program_with_panel.vee, and click OK.

VEE displays error messages during development and when a program runs,
and can display caution, error, and informational messages as follows:

� When you run a program, VEE may display a yellow-titled Caution
box.

� When you run a program, VEE may display a red-titled Error box.

� If you make a mistake while creating a program, such as typing an out of
range value of 33000 into an Int16 Constant, VEE displays an
Error message box with a dark blue title bar.

� VEE also displays information in the status bar about errors and cautions.
The status bar is along the bottom of the VEE window.

Showing Data Flow

1. Click the Show Data Flow button on the center of the tool bar as shown
in Figure 2-18. (Or you can click Debug ⇒ Show Data Flow.)

Figure 2-18. Show Data Flow

(To turn it off, click it again.) When you run the program, you will see
small squares moving along the data lines to indicate the flow of data.

Show Data Flow button on toolbar
100 Chapter 2

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Figure 2-19. Data Flow in simple-program.vee

For example, in Figure 2-19, data moves from the Real64 Slider to
the Noise Generator. The output from the Noise Generator and
the Function Generator are input to the A+B object, and the results
are displayed in the Waveform (Time) display.

Showing Execution Flow

1. Click the Show Execution Flow button on the tool bar as shown in
Figure 2-20. (Or click Debug ⇒ Show Execution Flow.)

Figure 2-20. Show Execution Flow

Show Execution Flow button on toolbar
Chapter 2 101

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
When you run the program, you will see a colored outline around the objects
as they execute.

Use Data Flow and Execution Flow to understand how a program is
operating, but turn them off to get higher performance. Combining these
features with debugging tools such as breakpoints will help you understand
how a VEE program works and where possible errors lie.

Examining Data on a Line

Checking the data at different points in your program is a fast, useful way to
debug your program. The Line Probe is a way to view the data on a given
line.

Place the mouse pointer over a data line in the detail view. The cursor
becomes a graphic of a magnifying glass. The line and its connections are
highlighted, and a box appears displaying the data value on the line. Click
the magnifying glass cursor, and a dialog box appears with more information
about the data line. (Or click Debug ⇒ Line Probe and click on a line.)

For example, Figure 2-21 shows part of a VEE program with the output
displayed from the iconized Function Generator. The output shows the
Function Generator generates a 256-point waveform array.

Figure 2-21. Displaying the Value on an Output Pin

Line Tip
102 Chapter 2

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
If you click on a data line, a dialog box appears with all the information
about the data on the line. For example, Figure 2-22 shows the dialog box
that appears when you click on the output of the Function Generator.

Figure 2-22. Displaying Information about a Line

Examining Terminals

To examine a terminal, double-click it in the open view as mentioned in
“Understanding Pins and Terminals” on page 46. If an object is iconized,
place the mouse pointer over the terminal, and VEE automatically pops up
the name of the terminal.

Using the Alphanumeric Displays for Debugging

You can add the Alphanumeric or Logging Alphanumeric displays at
different points in a program to track the flow of data. When the program is
running correctly, delete them. AlphaNumeric displays a single data
Chapter 2 103

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
container (a Scalar value, an Array 1D, or Array 2D), and Logging
AlphaNumeric (either a Scalar or Array 1D) displays consecutive input
as a history of previous values. You can also use a Counter to see how
many times an object ran.

Using Breakpoints

A breakpoint causes a program to pause before it executes a particular
object. You can set breakpoints in a program to examine the data. When a
breakpoint is set on an object, the object is highlighted with an orange
colored outline. When the program runs, it will pause before executing that
object.

1. Set a breakpoint on a single object. Double-click the title bar of an object
to get the Properties dialog box, then select Breakpoint Enabled
and click OK. Then select Debug ⇒ Activate Breakpoints. Run
the program. It will pause at the object with the breakpoint.

2. Set additional breakpoints on several other objects. Select the objects.
(Press Ctrl and click on each object.) Click the Toggle Breakpoint(s)
button on the tool bar as shown in Figure 2-23. (You could also press
Ctrl-B.) Run the program again. The program pauses at the first object
with a breakpoint set.

Figure 2-23. Set Breakpoint(s)

3. Resume the program to continue and pause at the next object with a
breakpoint set. Click the Resume button on the tool bar, shown in Figure
2-24. (Also in the Debug menu.)

Toggle Breakpoint Button
104 Chapter 2

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Figure 2-24. Resume Program (same as the Run Button)

4. Now clear breakpoints from the program. Select the objects with
breakpoints. Click the Toggle Breakpoint(s) button on the tool bar,
shown in Figure 2-25. You can also select Debug ⇒ Clear All
Breakpoints.

Figure 2-25. Clear Breakpoint(s)

5. To pause or stop the program, click the Pause or Stop buttons on the tool
bar, shown in Figure 2-26. (Also located in the Debug menu.)

Figure 2-26. Pause or Stop a Program

Resume Button
(same as Run Button)

Toggle Breakpoint Button

Pause Button Stop Button
Chapter 2 105

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Resolving Errors

If you get an error message when you run a program, VEE automatically
puts a red outline around the object where the error was found.

You can either correct the error and the outline will disappear, or you can
click the Stop button, which will remove the red outline, and then fix the
error. If you click Stop, you can look at the error again before resuming,
with View ⇒ Last Error.

Using the Go To Button to Locate an Error

Figure 2-27 shows an example runtime error message. When this program
runs, VEE displays a Run Time error and shows a red outline around the
UserObject AddNoise. When the Go To button is pressed, VEE opens the
UserObject AddNoise and shows a red outline around the A + B object,
which is missing a connection on the A input pin. In a large program, the Go
To feature can help you locate the source of an error quickly.
106 Chapter 2

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Figure 2-27. Example Runtime Error Message using Go To

Following the Order of Events Inside an Object

Figure 2-28 shows the order of events inside an object.
Chapter 2 107

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Figure 2-28. The Order of Events in an Object

In Figure 2-28, the pins operate as follows:

1 If the sequence input pin is connected, the object will not operate
until it receives a message to execute (a “ping” in VEE terms).
However, the sequence input pin does not have to be connected.

2 All data input pins must have data before the object operates. (You
can add data input/output pins to most objects. Click on the
Add/Delete Terminal menu in any object menu to find out the
pins that can be added.)

3 The object performs its task. In this case, A is added to B and the
result is placed on the output pin.

4 The data output pin fires. The object waits for a signal from the next
object that the data is received before its operation is completed.
Therefore, a given object does not fire its sequence output pin until
all objects connected to its data output pin have received data.

5 The sequence output pin fires.

1 (if connected)

2

3

4

5
108 Chapter 2

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
There are exceptions to this sequence of events:

� You can add error output pins to trap errors inside an object. The error
output pins override the standard object behavior. If an error occurs when
the object executes, the error pin will send out a message and the data
output pins will not fire.

� You can add control input pins to some objects, and they may cause the
object to perform some immediate action. For example, an object
sub-function such as Title or Autoscale in the Waveform (Time)
display can be performed with control pins. Control lines to an object are
shown in VEE programs as dashed lines

For example, Figure 2-29 shows a control line that sets a custom title for
the waveform display. Note that the object is not required to have data on
a control pin to perform this action. The object does not execute, only the
action such as setting the title is performed. You can click Show Data
Flow to see how the control line to the Title control input will carry
data first.

Figure 2-29. Control Line Used to Execute Custom Title
Chapter 2 109

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Following the Execution Order of Objects in a Program

As a VEE program runs, the objects execute in the following order:

1. Start objects operate first.

Figure 2-30 shows a VEE program with two threads, which are sets of
objects connected by solid lines in a VEE program. The Start objects,
located under Flow ⇒ Start, are used to operate the individual threads
in a program. If a program includes Start object(s), they execute first.

Figure 2-30. Start Objects Executing Separate Threads

2. Objects with no data input pins operate next. Data ⇒ Constant
objects are often in this category.

3. Objects with input pins will only operate when all connected inputs are
satisfied. (Recall that connecting sequence inputs is optional.)
110 Chapter 2

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
Stepping Through a Program

Stepping through a program is a very effective debugging tool. VEE has
functions to Step Into, Step Over, and Step Out of objects.

To activate stepping, click the Step Into, Step Over, or Step Out buttons on
the tool bar, shown in Figure 2-31.

Figure 2-31. Step Into, Step Over, and Step Out Buttons on the Toolbar

� Step Into executes a program one object at a time. If the program reaches
a UserObject or UserFunction, VEE puts the UserObject or
UserFunction into detail view and executes each of the objects inside
it.

� Step Over and Step Out execute a program one object at a time, without
opening UserObjects or UserFunctions. If the program reaches a
UserObject or UserFunction, VEE executes the UserObject or
UserFunction in its entirety.

For example, to step through a program:

1. Open the simple-program_with_panel.vee program.

2. Click the Step Into button on the tool bar.

3. As you keep clicking Step Into, the colored outlines around the objects
guide you through the program sequentially.

Step Into Step Over
Step Out
Chapter 2 111

Agilent VEE Programming Techniques
Debugging Programs in Agilent VEE
When stepping, VEE puts the Panel View behind the Detail View to
show you the order of objects as they execute. Within Main the input boxes
have no input pins connected, so they execute first in no defined order. If
you wanted them to execute in a particular order, you could control this by
connecting their sequence pins.

Data flows left to right, so you see the data generators executing next in no
particular order. The addition (A+B) object cannot execute until both inputs
are satisfied. Then the Waveform (Time) object executes. Again, you
could mandate execution order anywhere in the program by using the
sequence pins or the Flow ⇒ Do object. (To learn more about the Do
object, consult Help.)

Note For more information about the step functions, refer to online Help. For
more information about UserFunctions, refer to Chapter 7, “Using
Agilent VEE Functions,” on page 271.
112 Chapter 2

Agilent VEE Programming Techniques
Practice Programs
Practice Programs
The practice programs in this section illustrate more VEE features.

Lab 2-6: Generate a Random Number

1. Document the program:

a. Select Display ⇒ Note Pad and place it at the top center of the
work area. Click on the editing area to get a cursor, then enter:

This program, Random, generates a real number
between 0 and 1, then displays the results.

2. Select Device ⇒ Function & Object Browser. Select Type ⇒
Built-in function, Category ⇒ All, and Functions ⇒ random.
Click Create Formula. Place the object in the work area and click to
place the object.

3. Click Data ⇒ Constant ⇒ Int32 and place it to the left of random.
Open the Int32 object menu, click Clone, and put this below the other
Int32 object. Double click the 0 to get a cursor, then enter 1. Connect
the constant object with 0 to the low input pin of random, and connect
the constant 1 to the high input pin.

4. Select Display ⇒ AlphaNumeric and place it to the right of the
random object. Open the object menus and select Help to understand the
objects better.

5. Connect the random object output pin to the AlphaNumeric input pin.
A data line appears, connecting the two objects.

Note As you move the mouse pointer with the line attached near the target pin, a
box highlights the pin. Then you click again to complete the connection.
Chapter 2 113

Agilent VEE Programming Techniques
Practice Programs
Note If for some reason you want to terminate the line connecting operation
before you have completed the link, double-click the mouse and the line will
disappear.

6. Click the Run button on the tool bar, and you will see a random number
displayed as shown in Figure 2-32.

Figure 2-32. The Random Program

7. Select File ⇒ Save As..., type Random.VEE, and click OK. (Or
save to EVAL.VEE, if you are using the evaluation kit software.) This
name will appear next to VEE in the title bar when you open it in the
future.

Lab 2-7: Setting and Getting a Global Variable

This program gives you more practice in the basic mechanics of building a
VEE program, and introduces global variables. You can use the Set
Variable object to create a variable that can be retrieved later in the
program using a Get Variable object. You can use any VEE data type.
This example uses a number of type Real64. (For more information about
VEE data types, see Chapter 4, “Analyzing and Displaying Test Data.”)
114 Chapter 2

Agilent VEE Programming Techniques
Practice Programs
1. Select Display ⇒ Note Pad and place it at the top-center of the work
area. Click on the upper left-hand corner of the editing area to get a
cursor, then enter the following information:

Set and Get a Global Variable prompts the user to
enter a real number. The variable, num, is set to this
real number. Then num is recalled and displayed.

2. Select Data ⇒ Constant ⇒ Real64 and place it on the left side of
the work area. Open the object menu and examine the Help entry.

3. Open the Real64 object menu and select Properties. Change the title
to the prompt, Enter a Real Number:, then click OK.

Note This exercise uses one of the Constant objects for an input dialog box by
simply changing its title to a prompt. This is a common technique for getting
user input. You could use Data ⇒ Dialog Box ⇒ Real64 Input.
Also, you can double-click on the title bar to get the Constant
Properties dialog box.

4. Select Data ⇒ Variable ⇒ Set Variable and place it to the right
of the Real64 object. Double-click globalA to highlight it, then enter
num. Notice the name of the object changes to Set num.

This means that the user will enter a real number in the Real64 object.
When the user clicks the Run button, the number will be set to the global
variable, num.

5. Connect the data output pin of the Real object to the data input pin of the
Set num object.

6. Select Data ⇒ Variable ⇒ Get Variable and place it below the
Set num object. Change the variable name to num. Notice the name of
the object changes to Get num.

7. Connect the Set num sequence output pin to the Get num sequence
input pin.
Chapter 2 115

Agilent VEE Programming Techniques
Practice Programs
Note A global variable has to be set before you can use it. Therefore, you need to
use the sequence pins in this case to make sure that the variable num has
been set, before you retrieve it with Get num.

8. Select Display ⇒ AlphaNumeric and place it to the right of the Get
num object.

9. Connect the Get num data output pin to the AlphaNumeric data input
pin.

10.Enter a real number and click the run button on the tool bar. The program
should look similar to Figure 2-33.

11.Select File ⇒ Save As... and name the program global.vee.
(If you are using the evaluation kit software, save the program to
EVAL.VEE.)

Figure 2-33. Set and Get a Global Variable
116 Chapter 2

Agilent VEE Programming Techniques
Documenting Agilent VEE Programs
Documenting Agilent VEE Programs
By using the File ⇒ Save Documentation... command, you can
automatically generate program documentation. VEE lists all objects, with
key settings, the default and user names, the Description entries, and any
“nesting.” For example, objects within a UserObject are nested one level
from the main VEE environment, and these levels are indicated by numbers.

You can also document individual objects using a Description. First, this
exercise describes how to document an individual object, and then how to
generate the program documentation.

Documenting Objects with Description Dialog Boxes

All objects have a Description item in their object menus, which
provides a dialog box to accept documentation on that particular object. This
documentation file also provides a way to correlate the documentation with
screen dumps. In this section, you will add an entry to the Description
dialog box.

1. Open the Random.vee program.

2. In the Main object menu, click Description. Type text in the dialog
box as shown in Figure 2-34: Click OK when you are done.
Chapter 2 117

Agilent VEE Programming Techniques
Documenting Agilent VEE Programs
Figure 2-34. The Description Dialog Box

Note The entries in the Description dialog box will not be visible to users
unless they access them through the object menu. Also, notice that you can
insert a file or a template in this dialog box.

Generating Documentation Automatically

Follow these steps to generate a file of program documentation:

1. Open Random.vee. Click File ⇒ Save Documentation.... Enter
the file name using a *.txt suffix (Random.txt, for example), then
click Save. By default, the file is saved on a PC in the folder C:\My
Documents\VEE Programs.

2. Open the file in any text editor to view or print. Figure 2-35, Figure 2-36,
and Figure 2-37 show the documentation file using the Notepad program
in MS Windows98.

Figure 2-35 shows the beginning of the file, with information on the file,
revision dates, and system I/O configuration.
118 Chapter 2

Agilent VEE Programming Techniques
Documenting Agilent VEE Programs
Figure 2-35. The Beginning of the Documentation File

Source file: "C:\\My Documents\\VEE Programs\\Random.vee"

File last revised: Mon Jan 03 15:29:02 2000

Date documented: Mon Feb 28 14:43:27 2000

VEE revision: 6.0

Execution mode: VEE 6

Convert Infinity on Binary Read: no

I/O Configuration

 My Configuration (C:\WINDOWS\Local Settings\Application
Data\Agilent VEE\vee.io)
Chapter 2 119

Agilent VEE Programming Techniques
Documenting Agilent VEE Programs
Figure 2-36. The Middle of the Documentation File

In Figure 2-36, the VEE objects are described along with their settings.
The number before each object indicates where the object is located. For
example, the first object in Main is listed as M1. Figure 2-37 shows the
remainder of this documentation file for your reference.

M: Main

 Device Type : Main

 Description :

 1. The program, Random, generates a real number between 0 and 1

 2. and then displays the results.

 Context is secured : off

 Trig mode : Degrees

 Popup Panel Title Text : Untitled

 Show Popup Panel Title : on

 Show Popup Panel Border : on

 Popup Moveable : on

 Popup Panel Title Text Color : Object Title Text

 Popup Panel Title Background Color : Object Title

 Popup Panel Title Text Font : Object Title Text

 Delete Globals at Prerun : on

M.0: Main/Note Pad

 Device Type : Note Pad

 Note Contents :

 1. This program, Random, generates a real

 2. number between 0 and 1, then displays

 3. the results.

 4.

M.1: Main/random(low,high)

 Device Type : Formula

 Input pin 1 : low (Any, Any)

 Input pin 2 : high (Any, Any)

 Output pin 1 : Result

 Formula : random(low,high)
120 Chapter 2

Agilent VEE Programming Techniques
Documenting Agilent VEE Programs
Figure 2-37. The Remainder of the Documentation File

Note After you run the Save Documentation command, run a File ⇒
Print Program command to put identification numbers on the objects, so
you can match the text documentation to the printer output.

M.2: Main/Int32

 Device Type : Constant

 Output pin 1 : Int32

 Wait For Event : off

 Auto execute : off

 Initialize At Prerun : off

 Initialize at Activate : off

 Constant size fixed : off

 Password masking : off

 Indices Enabled : on

 Int32 Value : 0

M.4: Main/Int32

 Device Type : Constant

 Output pin 1 : Int32

 Wait For Event : off

 Auto execute : off

 Initialize At Prerun : off

 Initialize at Activate : off

 Constant size fixed : off

 Password masking : off

 Indices Enabled : on

 Int32 Value : 1

M.5: Main/AlphaNumeric

 Device Type : AlphaNumeric

 Input pin 1 : Data (Any, Any)

 Clear At Prerun : on

 Clear at Activate : on

 Indices Enabled : on
Chapter 2 121

Agilent VEE Programming Techniques
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review topics, if
necessary, before proceeding to the next chapter.

� Create a UserObject, and explain how UserObjects give programs
structure and save space on screen.

� Create pop-up dialog boxes and sliders (or knobs) for user input.

� Use data files to save data to a file and load data from a file.

� Create an operator interface, using a Panel view of the program.

� Use different data types and data shapes.

� Use mathematical operators and functions.

� Use online Help.

� Show the data flow and the execution flow in a program.

� Debug programs by examining data on a line, terminals, and
alphanumeric displays.

� Use breakpoints.

� Resolve errors with the GoTo command.

� Use Step Into, Step Over, and Step Out to trace and debug a program.

� Document objects with description dialog boxes.

� Generate a documentation file.
122 Chapter 2

3

Easy Ways to Control Instruments

Easy Ways to Control Instruments
Easy Ways To Control Instruments

In this chapter you will learn about:

� Configuring an instrument

� Using a panel driver

� Using the Direct I/O object

� Controlling PC plug-in boards

� Using a VXIplug&play driver

Average time to complete: 1 hour
124 Chapter 3

Easy Ways to Control Instruments
Overview
Overview
In this chapter, you will learn how to use VEE to control instruments. With
VEE, you can control instruments in several ways:

� “Panel” drivers give you a simple user interface (or “front panel”) to
control an instrument from your computer screen. When you change
parameters in the VEE panel driver, the corresponding state of the
instrument is changed. Panel drivers are provided by Agilent
Technologies with VEE and cover over 450 instruments from different
vendors.

� The Direct I/O object allows you to transmit commands and receive
data over many supported interfaces. This technique is equivalent to
using command strings with a textual language like Rocky Mountain
Basic.

� Open Data Acquisition Standard Drivers (ODAS drivers) use
ActiveX Automation technology to control PC Plug-in cards (PCPI
cards). An ODAS driver has a standard format, and therefore can be
supplied by the vendor of the PC Plug-in card or another third party.

� I/O libraries can be imported to control PC Plug-in boards and then call
functions from that library using the Call object. These libraries, usually
shipped as Dynamic Link Libraries (DLLs), are similar to ODAS drivers,
but ODAS drivers are standard and easier to use.

� VXIplug&play drivers can be used to call C functions to control
instruments. These are provided by Agilent Technologies and other
vendors with their supported instruments.

This chapter is designed to give you the fundamentals of controlling
instruments to cover most situations. For more complete information, refer
to VEE OneLab Advanced Techniques.
Chapter 3 125

Easy Ways to Control Instruments
Overview
Panel Drivers

Agilent VEE includes over 450 panel drivers for different instrument
vendors. A panel driver works by using a display in the VEE program that
controls the settings in the corresponding physical instrument. Panel drivers
provide maximum ease-of-use and save the most development time. Figure
3-1 shows an example panel driver.

Figure 3-1. The HP54600A Scope Panel Driver

Direct I/O Object

VEE’s Direct I/O object allows you to communicate with any instrument
from any vendor over standard interfaces (whether or not there is a driver
available for the instrument). The Direct I/O object works by transmitting
commands to the instrument and receiving data back from the instrument.
Using Direct I/O generally yields faster execution speeds. Choosing the best
method of instrument control will depend on driver availability, the need for
fast test development, and the performance requirements. Figure 3-2 shows
an example using Direct I/O to control a function generator.
126 Chapter 3

Easy Ways to Control Instruments
Overview
Figure 3-2. A Function Generator Direct I/O Object

PC Plug-in Boards with ODAS Driver

ODAS drivers are supplied by the vendor of the PC Plug-in card or can also
be supplied by a third party, since they are standard drivers. VEE enables
you to control a PC Plug-in board with an ODAS driver by choosing PC
Plug-in board functions in a Formula object.

ODAS drivers give you a more standard way to control a PC Plug-in board
than proprietary DLLs, and port better from one PC to another. Figure 3-3
shows an example of a Formula object in VEE used to control a PC Plug-in
board with an ODAS driver.

Figure 3-3. ODAS Driver Object in a VEE Program

PC Plug-in Boards with I/O Library

I/O libraries, usually shipped as Dynamically Linked Libraries (or DLLs) for
PC Plug-in boards, are supplied by the vendor of the PC Plug-in board. VEE
enables you to control the PC Plug-in board by calling library functions with
the Call object. Figure 3-4 shows an example of the Import Library
object that makes the functions available in VEE.
Chapter 3 127

Easy Ways to Control Instruments
Overview
Figure 3-4. Importing a PC Plug-In Library

VXIplug&play Drivers

VXIplug&play drivers are supplied by the instrument vendor or by Agilent
Technologies. (For a list of VXIplug&play drivers available from Agilent
Technologies, refer to the VEE literature or the VEE OneLab Advanced
Techniques manual. Contact your instrument vendor for other
VXIplug&play drivers.) VEE enables you to control an instrument with a
VXIplug&play driver by making calls to the driver. Figure 3-5 shows an
example of calls to a VXIplug&play driver from VEE.

Figure 3-5. Calls to a VXIplug&play Driver from VEE
128 Chapter 3

Easy Ways to Control Instruments
Configuring an Instrument
Configuring an Instrument
With VEE you can develop programs without the instruments present. In
this exercise, you will configure an oscilloscope for use with a panel driver.
Then you will add the physical instrument to the configuration.

Lab 3-1: Configuring an Instrument without the
Instrument Present

1. Select I/O ⇒ Instrument Manager.... Move the dialog box to the
upper-left work area by clicking and dragging its title bar, as shown in
Figure 3-6.

Figure 3-6. The Instrument Manager Box
Chapter 3 129

Easy Ways to Control Instruments
Configuring an Instrument
Note If you have any instruments connected and powered on, VEE can find the
instruments and automatically find the drivers for them. For more
information about automatically finding and configuring instruments, refer
to the online Tutorials under Help ⇒ Welcome ⇒ Tutorials in the main
VEE screen.

By default, there are no instruments configured, and this example assumes
that no instruments appear in the Instrument Manager list.

2. In the Instrument Manager dialog box, make sure My
Configuration is highlighted, and click Add... under Instrument.
The Instrument Properties dialog appears, as shown in Figure 3-7.

Figure 3-7. Instrument Properties Dialog Box
130 Chapter 3

Easy Ways to Control Instruments
Configuring an Instrument
The entries in the Instrument Properties dialog box are as follows:

3. Change the name to scope, leave all the other defaults as they are, and
click Advanced.... The Advanced Instrument Properties
dialog box appears as shown in Figure 3-8.

Name The name the instrument will be called in the program.
Choose a name that follows these syntax guidelines:

� Instrument names must start with an alphabetic
character, followed by alphanumeric characters or
underscore characters.

� You cannot use embedded blanks in instrument names.

Interface Type of interface. Choose from GPIB, Serial, GPIO, or
VXI.

Address The logical unit of the interface (GPIB is usually 7) plus
the local bus address of the instrument (a number from 0 to
31). If you leave the address at 0, it means that you are
developing without an instrument present.

Gateway Specifies whether instruments are controlled locally or
remotely. Use the default entry This host to control
instruments locally, or enter a Gateway for remote control.
(For more information, refer to the VEE OneLab Advanced
Techniques manual.)
Chapter 3 131

Easy Ways to Control Instruments
Configuring an Instrument
Figure 3-8. The Advanced Instrument Properties Dialog

The entries in the General folder are as follows:

4. Toggle Live Mode to OFF. Then click the Panel Driver folder, and
the dialog box appears as shown in Figure 3-9.

Timeout The maximum number of seconds allowed for an I/O
transaction to complete before you get an error message.

Live Mode Specifies whether there is live communication with the
instrument. Set this to OFF unless you have an
instrument present. VEE defaults to the ON setting.

Byte Ordering Specifies the order the device uses for reading and
writing binary data. The field toggles between Most
Significant Byte (MSB) first or Least Significant Byte
first. All IEEE488.2-compliant devices must default to
MSB order.

Description Enter any description here. For example, if you want the
instrument number on the title bar, enter the number.
132 Chapter 3

Easy Ways to Control Instruments
Configuring an Instrument
Figure 3-9. The Panel Driver Folder

5. Click the field to the right of ID Filename to obtain a list box entitled
Read from what Instrument Driver?. This list includes all of the
panel driver files loaded with your revision of VEE in the directory
specified.

Note You will need to have installed the panel drivers from the VEE CD-ROM in
order to complete the example. The *.cid files signify the compiled
instrument driver files.

6. Scroll down the list to highlight hp54504a.cid, then click Open. Figure
3-9 shows this instrument already selected. You can also double-click on
a highlighted file to select it.
Chapter 3 133

Easy Ways to Control Instruments
Configuring an Instrument
The other entries in the Panel Driver folder are as follows:

7. Click OK to return to the Instrument Properties box. Click OK.

The list of available instruments should now include an instrument
configuration named scope, using the driver file hp54504a.cid, as
shown in Figure 3-10. The instrument does not have a bus address
specified, because it is not live at present. You can develop the program
in this mode, and add an address later, when you are ready to connect the
instrument to your computer.

Tip: Press the Tab key after typing in a field to move to the next field,
and press Shift-Tab to move to the previous field. Pressing Enter is
equivalent to clicking OK. VEE closes the dialog box.

Sub Address Leave this field blank. Sub Address is used only by non-
VXI cardcage instruments for identifying plug-in
modules.

Error
Checking

Leave the default setting ON. Error Checking can be
turned off for extra throughput, but then it does not
check for I/O errors.

Incremental
Mode

Leave the default setting ON. Incremental Mode can
also be turned off, which sends the entire instrument
command string for the instrument state each time you
change a setting.
134 Chapter 3

Easy Ways to Control Instruments
Configuring an Instrument
Figure 3-10. Scope Added to List of Instruments

8. Click Save to close the Instrument Manager box. (You could also
click Panel Driver under Create I/O Object to put it in the
program immediately, and VEE would save the configuration
automatically.)

You have now added the HP 54504A oscilloscope named scope to the
instrument list. You can use this driver while programming, even though the
actual instrument is not present.

Selecting an Instrument to Use in a Program

1. Select I/O ⇒ Instrument Manager....

2. Highlight the selection scope(@(NOT LIVE)), then click Panel
Driver under Create I/O Object.
Chapter 3 135

Easy Ways to Control Instruments
Configuring an Instrument
Note In the Instrument Manager, you can often create different types of
objects under Create I/O Object, depending on the type of instrument
configured. For example, if you had chosen Direct I/O rather than Panel
Driver for this exercise, you would get a Direct I/O object with the
name scope(@(NOT LIVE)).VEE also provides a Component Driver,
which uses a subset of the functions provided by a Panel Driver. For
more information, refer to the VEE OneLab Advanced Techniques manual.

3. Place the outline of the scope panel and click to place it. The display
should look similar to Figure 3-11.

Figure 3-11. Selecting scope(@(NOT LIVE))

You may now use the panel driver in the program like any other VEE
object.
136 Chapter 3

Easy Ways to Control Instruments
Configuring an Instrument
Adding the Physical Instrument to the Configuration

1. Select I/O ⇒ Instrument Manager..., and highlight scope.
Under Instrument... click Properties.

2. Double-click the Address field to highlight the current entry and type
709. The 7 in 709 is the logical unit. (If the GPIB (HP-IB) logical unit is
not 7, replace 7 with the actual logical unit number.) The 9 in 709 is the
default address for scopes.

3. Click Advanced: and toggle Live Mode to ON, then click OK. Click OK
to close the Instrument Properties box.

4. Click Save to save the changes.
Chapter 3 137

Easy Ways to Control Instruments
Using a Panel Driver
Using a Panel Driver
These exercises use the HP 3325B Function Generator as the example. The
principles are the same in using any VEE panel driver. By using a panel
driver instead of programming an instrument directly, you save time
developing and modifying programs. Changes in the instrument settings are
made through menu selections or by editing fields in dialog boxes. If the
instrument is connected and Live Mode is ON, the changes you make will
register on the instrument.

To use a panel driver in a program, add inputs and/or outputs as needed and
connect the panel driver to other objects. You can use several instances of
the same driver in a program to set the instrument to different states. In VEE,
you can iconize a panel driver to save space, or use the open view to display
the instrument settings. You can also change settings while a program is
running.

Lab 3-2: Changing Settings on a Panel Driver

1. Select I/O ⇒ Instrument Manager.... Select My
Configuration, then click Add... under Instrument to display the
Instrument Properties dialog box, and edit the information as
follows:

2. Click on Advanced. In the General folder and toggle Live Mode to
OFF.

3. Click on the Panel Driver folder and set ID Filename: to
hp3325b.cid. Click OK twice to return to the Instrument Manager.

4. Under Create I/O Object, click Panel Driver. Place the object on
the left side of the workspace. (This process would be the same

Name Edit to fgen and press the Tab key twice to move to
the Address field.

Address Change to 713, or the address you want on the bus.
138 Chapter 3

Easy Ways to Control Instruments
Using a Panel Driver
regardless of the instrument, as long as the instrument had been
configured and added to the list.)

Note You are programming without the instrument attached. If the instrument
were attached, you would edit the configuration to the proper address.

5. Click Sine in the Function field to get a pop-up menu, and then
select Triangle as shown in Figure 3-12.

Figure 3-12. The Function Pop-up Menu on fgen

6. Click the field to the right of Frequency.

7. Type 100 in the Continuous component FREQUENCY dialog box that
appears, and click OK. Note that the Frequency setting has now
changed.

You can use the same methods to change the instrument settings on any
driver. If the instrument is configured with an address and Live Mode is ON,
every change you make in the driver panel is reflected by the instrument.
Chapter 3 139

Easy Ways to Control Instruments
Using a Panel Driver
Moving to Other Panels on the Same Driver

Most drivers have more than one panel to simplify the user interface. To
move to a different panel, click Main Panel in the object to get a menu of
panels.

1. In the Panel Driver object, click Main Panel and select Sweep in
the Discrete Component MENU presented as shown in Figure 3-13.

2. Click OK to display the Sweep Panel. You can also look at the other
panels to see what is available.

3. Click OK to return to the Main Panel.

Figure 3-13. Sweep Panel in Discrete Component Menu
140 Chapter 3

Easy Ways to Control Instruments
Using a Panel Driver
Adding Inputs and/or Outputs to a Panel Driver

In addition to interacting with the panel directly, you can control settings or
read data from an instrument in a program by adding data inputs and/or
outputs to the driver. The input and output areas are shown in Figure 3-14.

Figure 3-14. The Data Input and Output Areas on a Driver

1. Place the mouse pointer over the data input area of the function generator
instrument panel, and press CTRL-A to add a data input terminal. A list
box of the instrument components appears.

2. Select the desired component from the menu presented.

Note You could also open the object menu and select Add Terminal by
Component ⇒ Select Input Component. Then select the desired
component field on the driver.

Follow the same process to add a data output, by placing the mouse pointer
in the data output area.

Data Input Area Data Output Area
Chapter 3 141

Easy Ways to Control Instruments
Using a Panel Driver
Deleting Data Input or Output Terminals

Place the mouse pointer over the terminal and press CTRL-D.

Note You could also open the object menu and select Delete Terminal ⇒
Input... from the object menu and choose the appropriate input from the
menu presented.

On Your Own

Set a state on the HP 3325B Function Generator, or any other function
generator available. Change the Function setting to a Square wave. Add
input components for Amplitude and Frequency. Create input dialog
boxes for the amplitude and frequency and modify the titles to prompt the
operator. Enter different values for the amplitude and frequency, and run the
program to see if the settings have changed after operator inputs. (If an
instrument is attached, then its settings will change if Live Mode is ON.)
142 Chapter 3

Easy Ways to Control Instruments
Using Direct I/O
Using Direct I/O
If there is not a driver available for a particular instrument, or you want
higher throughput, use the Direct I/O object.

Lab 3-3: Using Direct I/O

In this exercise, you will configure the HP 3325B function generator using
Direct I/O.

1. Select I/O ⇒ Instrument Manager....

2. Highlight the fgen(@(NOT LIVE)) entry and select Instrument ⇒
Properties.

3. Click on Advanced. Select the Direct I/O folder as shown in Figure
3-15. Look through the options available, then click OK to return to
Instrument Properties, then OK again to return to the
Instrument Manager.

Figure 3-15. The Direct I/O Configuration Folder
Chapter 3 143

Easy Ways to Control Instruments
Using Direct I/O
Note This example uses the GPIB interface (IEEE488). To configure Serial,
GPIO, or VXI instruments, refer to the VEE OneLab Advanced Techniques
manual.

4. To place the object on the screen, make sure that fgen(@(NOT LIVE))
is still highlighted, and click Create I/O Object ⇒ Direct I/O.
Figure 3-16 shows the Direct I/O object.

Figure 3-16. A Direct I/O Object

To use a Direct I/O object in a program, you have to configure I/O
transactions. The next section explains writing text commands, reading data,
and uploading/downloading instrument states.

Sending a Single Text Command to an Instrument

To send a single text command to an instrument, type in the appropriate
string. Most GPIB instruments use alphanumeric strings for commands sent
to the instrument. For example, to send a command to the HP3325B
Function Generator to set the amplitude to 5 volts, you would enter the
command string "AM 5 VO".

This exercise uses the HP 3325B function generator configured in the
previous section. If necessary, go back to “Using Direct I/O” on page 143
and configure the instrument before you continue.

1. In the fgen(@(NOT LIVE))object, double-click the transaction bar to
get the I/O Transaction dialog box, as shown in Figure 3-17.
144 Chapter 3

Easy Ways to Control Instruments
Using Direct I/O
Figure 3-17. The I/O Transaction Dialog Box

The down arrow next to WRITE shows a menu of transactions: READ,
WRITE, EXECUTE, and WAIT. To write data to an instrument, use the
default selection. Open the object menu and consult Help to find out
about each action.

2. Use the default selections WRITE, TEXT, DEFAULT FORMAT, and EOL
ON. Click the input field labeled a, type "AM 5 VO" (including the
quotes), and click OK.

You should see the transaction WRITE TEXT "AM 5 VO" EOL as shown in
Figure 3-18. The text in quotation marks is the command that will be sent to
the HP3325B when the program runs.

Figure 3-18. A Direct I/O Transaction

In most cases, the process will be the same for sending text commands to
instruments. However, there are instruments that specify characters sent at
the end of each command or at the end of a group of commands. You need to
get this information from the instrument documentation, then include it in
the Direct I/O Configuration dialog box.
Chapter 3 145

Easy Ways to Control Instruments
Using Direct I/O
Sending an Expression List to an Instrument

In some cases, you may want to send an expression list to an instrument. For
example, you may want to loop through a number of frequencies in the
Function Generator. To do so using a Direct I/O Transaction, you
would use a variable for the frequency in an expression list, and add a data
input for that variable to the Direct I/O object. The following steps describe
how to send an expression list to an instrument.

1. Place a second Direct I/O object for the HP3325B in the Main
window. Double-click in the transaction area to get the I/O
Transaction dialog box.

You can use all of the defaults except for the command string. In this
case, use the format "FR", <frequency>, "HZ". This is an Expression
List, each expression being separated by commas. The frequency is
represented by variable A, which will be a data input to the Direct I/O
object.

2. Click on the input field for command strings and type "FR",A,"HZ".
(For example, if A were 100, VEE would send the string "FR100HZ".)
Click OK. Notice that VEE automatically adds a data input pin labeled A.

3. Select Flow ⇒ Repeat ⇒ For Range and place it to the left of the
Direct I/O object.

4. Connect the For Range data output pin to the Direct I/O data input
pin.

5. Edit the fields in For Range to: From 10, Thru 1.8M, and Step 50k.

For Range will now send out numbers ranging from 10 to 1.8 million in
steps of 50,000. As the numbers are received by the Direct I/O object, the
command string causes the function generator to output the frequencies.
The Direct I/O setup should look like Figure 3-19.
146 Chapter 3

Easy Ways to Control Instruments
Using Direct I/O
Figure 3-19. Direct I/O Setup Using an Input Variable

6. (Optional) Connect an HP3325B to your computer, if you have one, and
edit the configuration of this Direct I/O object to include the address of
the instrument. Run the program and you will see the instrument
generating these frequencies.

Reading Data From an Instrument

Instruments send data to a computer in many different formats. To read data
from an instrument, you must know the datatype you want to read, and
whether the data is returned as a single value (scalar) or an array. You must
also know if the instrument returns data as text (ASCII) or binary.

You can find this information in the instrument documentation, or you can
use the VEE Bus I/O Monitor in the I/O menu to examine the data
being returned. This information determines how to configure the I/O
transaction.

In this example, an HP3478A Multimeter is connected to the HP3325B
Function Generator described in the last exercise. When the generator sends
out a certain frequency, the multimeter triggers a reading and sends the
results back to VEE. The following steps describe how to configure the
transactions for the multimeter.

Note This example describes a READ TEXT transaction. Other choices for READ
include BINARY, BINBLOCK, and CONTAINER, which are discussed in detail
in the VEE OneLab Advanced Techniques manual.

1. Select I/O ⇒ Instrument Manager.... Click Add.... Change the
name to dvm. Click on Advanced... and set Live Mode: to OFF.
Chapter 3 147

Easy Ways to Control Instruments
Using Direct I/O
Assuming that you do not have an HP3478A connected, click OK to
return to the Instrument Manager. (If you do have an HP3478A, modify
the address and the instrument will track the commands.)

2. Highlight dvm(@(NOT LIVE)) and click Direct I/O under Create
I/O Object.

3. Double-click the <Double-Click to Add Transaction> bar to
display the I/O Transaction dialog box.

4. Highlight the input field and type "T5", then click OK. This will write
the "T" command to the instrument. T5 is the command for a single
trigger to the multimeter.

5. Open the object menu and click Add Trans... to add another
transaction bar, or use <Double-Click to Add Transaction> to
add a transaction and display the I/O Transaction dialog box.

6. Click the down arrow beside WRITE to get a drop-down menu, then select
READ. When you select READ, new buttons appear in the I/O
Transaction box.

7. Check the ExpressionList input field to verify that it contains an x.
Press Tab to move to the next field. Data returned from an instrument is
sent to data output pins. In this case, data will be read from the instrument
and put into a data output named x.

Note Names are not case sensitive.

8. Leave the REAL64 FORMAT default. The multimeter returns single
readings as real numbers.

9. Leave DEFAULT NUM CHARS as is.

The default for the number of characters is 20. If you want to change the
number, click on DEFAULT NUM CHARS to toggle to MAX NUM CHARS
and change the number 20 to the desired number.

10.Leave SCALAR as is and click OK.
148 Chapter 3

Easy Ways to Control Instruments
Using Direct I/O
You will see the transaction displayed on the bar as READ TEXT X
REAL64. Notice that VEE automatically adds a data output named x.

Note If the instrument is returning an array of values, click on the SCALAR menu
in the I/O Transaction dialog box to get the menu for different
dimensions, as shown in Figure 3-20. Once you have selected the array
dimension, you will also need to specify a size for the array.

Figure 3-20. Configuring a READ Transaction

11.Add a Display ⇒ AlphaNumeric to the right and connect its input to
the Direct I/O output labeled X.

The two Direct I/O transactions should look like Figure 3-21.

Figure 3-21. Direct I/O Configured to Read a Measurement
Chapter 3 149

Easy Ways to Control Instruments
Using Direct I/O
The process to configure a transaction is similar, regardless of the data
format for the READ TEXT transaction. You can explore the other formats
available. For a more detailed information about each item, refer to the VEE
OneLab Advanced Techniques manual.

To create a complete test program, this multimeter object and a function
generator object could be combined with VEE data and display objects.
Fully functional test programs are easy to create in VEE. However, it is
beyond the scope of this introductory chapter to show specific details for all
the various instruments you might be using. For more complex examples,
refer to the VEE OneLab Advanced Techniques manual.

Uploading and Downloading Instrument States

Some instruments offer a “learn string” capability. The learn string
embodies all the function settings that compose an instrument state. Direct
I/O will upload this learn string, save it with that particular Direct I/O object,
and later allow you to download it to the instrument in the program. To
upload an instrument state, follow these steps:

1. Set the instrument to the desired state manually.

2. Open the Direct I/O object menu and click Upload State.

Now this state is associated with this particular instance of the Direct I/O
object.

3. Open an I/O Transaction dialog box by double-clicking in the
transaction area.

4. Click TEXT, select STATE (LEARN STRING), then click OK to close the
I/O Transaction box. The previously captured state is sent to the
instrument when this WRITE transaction is executed.

Uploading and downloading are controlled by the settings in the Direct I/O
Configuration dialog box. If Conformance is IEEE 488.2, then VEE will
automatically handle learn strings using the 488.2 *LRN? definition. If
Conformance is IEEE 488, then Upload String specifies the command
used to query the state, and Download String specifies the command that
precedes the state string when downloaded. Figure 3-22 shows an example.
150 Chapter 3

Easy Ways to Control Instruments
Using Direct I/O
Figure 3-22. Learn String Configuration for HP54100A

Conformance can support IEEE 488 or IEEE 488.2. This example uses the
HP 54100A Digitizing Oscilloscope, which conforms to IEEE 488 and
requires a "SETUP?" to query the learn string and "SETUP" to precede the
learn string when downloading. When you select Configured for State
(Learn String) two more fields appear, labeled Upload String and
Download String. The proper strings have been entered in their input
fields.
Chapter 3 151

Easy Ways to Control Instruments
Using PC Plug-in Boards
Using PC Plug-in Boards
VEE provides three ways to control PC plug-in boards or cards:

1. ODAS drivers supplied by the PC Plug-in card vendor.

2. Data Translation’s Visual Programming Interface. (Order the VPI
application directly through Data Translation.)

3. Dynamic link libraries supplied by the PC board manufacturer, such as
ComputerBoards or Meilhaus. (See “Using Dynamic Link Libraries” on
page 335 for information on using dynamic link libraries.)

Using ODAS Drivers

Follow the manufacturer’s instructions to install the PC Plug-in board,
install the ODAS driver software, and run the ODAS configuration utility.
Then configure the driver in VEE.

1. Select I/O ⇒ Instrument Manager.... Select Find
Instruments. The Instrument Manager displays entries similar to
those shown in Figure 3-23.
152 Chapter 3

Easy Ways to Control Instruments
Using PC Plug-in Boards
Figure 3-23. ODAS Driver Entries in Instrument Manager

2. Select one of the sub-entries such as Thermistor0, and under Create
I/O Object, select PCPI Driver. Click to place the object. It appears
as a Formula object in VEE as shown in Figure 3-24.

Figure 3-24. PC Plug-in Card with ODAS Driver as Formula Object

For more detailed information about using PC Plug-in Cards with ODAS
drivers, refer to the VEE OneLab Advanced Techniques manual.
Chapter 3 153

Easy Ways to Control Instruments
Using PC Plug-in Boards
Data Translation’s Visual Programming Interface (VPI)

Data Translation’s VPI works with VEE to create seamless data acquisition
performance for PC plug-ins. By leveraging the flexibility of Data
Translation’s Open Layers standards, you have access to over 50 data
acquisition boards.

The VPI works directly with plug-in ISA, PCI, and USB-based data
acquisition cards that require low channel count. The VPI adds a menu
selection and specific PC plug-in data acquisition icons to VEE. These drive
the Data Translation hardware functionality.

Amplicon

Amplicon has a wide range of analog and digital I/O PC plug-in boards
within the 200 Series, all with VEE support.

The software interface is part of Amplicon’s AmpDIO driver package, a 32-
bit API with a multithreaded DLL for Windows and support for interrupt
driven acquisition. The API contains over 100 calls for efficient and flexible
programming as a Compiled Function using a VEE-specific definition file
and the facility to utilize up to eight boards in one program.

In addition to Amplicon’s own range of plug-in boards, which includes
serial communication devices, Amplicon can supply boards from a wide
range of other manufacturers for data acquisition, serial communication, and
GPIB applications.

Figure 3-25 shows the VEE runtime software (provided free with Amplicon
analog output boards PCI224 and PCI234 and analog input boards PCI230
and PCI260) providing concurrent input and output signals on a PC.
154 Chapter 3

Easy Ways to Control Instruments
Using PC Plug-in Boards
Figure 3-25. Amplicon Data Acquisition Example

ComputerBoards PC Plug-ins

ComputerBoards offers low cost, powerful PC plug-in boards that are
compatible with VEE. (For a complete list of supported PC plug-in vendors,
see VEE literature or VEE OneLab Advanced Techniques.)

You simply install the board and its I/O library, and configure the board
using a program supplied by the manufacturer. Follow the instructions to
connect the board to the device. In VEE, import the library, and you are
ready to call the measurement functions in the ComputerBoards I/O library.
See the figures below from a demonstration program supplied by the
manufacturer.
Chapter 3 155

Easy Ways to Control Instruments
Using PC Plug-in Boards
Figure 3-26. VEE Using a ComputerBoards 100 KHz Board

Figure 3-26 shows the panel view of the demonstration program using this
100 KHz A/D board. Figure 3-27 shows VEE importing the
ComputerBoards I/O library that made these data acquisition function calls
possible.

Figure 3-27. Importing the ComputerBoards I/O Library
156 Chapter 3

Easy Ways to Control Instruments
Using PC Plug-in Boards
Meilhaus Electronic ME-DriverSystem

Meilhaus Electronic is one of the leading European designers, producers and
sales companies for PC-based data acquisition and interface technology. The
ME-DriverSystem for Windows on CD-ROM is included with all data
acquisition boards made by Meilhaus Electronic (i.e. ME series). The ME-
DriverSystem is also integrated into the VEE menu structure.

After the ME-DriverSystem for VEE is installed, the driver functions appear
in a VEE pull-down menu. Figure 3-28 shows the ME Board menu in VEE.

Figure 3-28. ME Board Menu in VEE
Chapter 3 157

Easy Ways to Control Instruments
Using a VXIplug&play Driver
Using a VXIplug&play Driver
VXIplug&play drivers are issued and supported by the various instrument
vendors. These are C-based drivers and are designed for the maximum
performance and ease of use.

Agilent VEE is fully VXIplug&play compatible. All available
VXIplug&play drivers from Agilent Technologies ship as a separate
product, and are also available on the Web at
http://www.agilent.com/find/inst_drivers. These same drivers
are also included with VEE along with all Agilent Technologies panel
drivers. To get VXIplug&play drivers for other instruments, contact the
instrument vendor.

Lab 3-4: Configuring a VXIPlug&play Driver

This example describes how to configure an HPE1412 driver.

1. Select I/O ⇒ Instrument Manager....

2. Highlight My configuration, then click Add... under Instrument
to get the Instrument Properties dialog box. Enter a name, such as
Instrument, and click Advanced... to display the Advanced
Instrument Properties dialog box.

3. In the Advanced Instrument Properties dialog box, toggle Live
Mode: to OFF and select the Plug&play Driver folder. Click the
Plug&play Driver Name: field to display the drop-down menu which
lists all the drivers installed on the computer. This example uses the
HPE1412 driver, as shown in Figure 3-29.
158 Chapter 3

Easy Ways to Control Instruments
Using a VXIplug&play Driver
Figure 3-29. Selecting a VXIplug&play Driver

4. Select the HPE1412 driver, click OK to return to the Instrument
Properties dialog box, and click OK to return to the Instrument
Manager. There should now be an entry for Instrument(@(NOT
LIVE)).

5. Highlight Instrument(@(NOT LIVE)), and under Create I/O
Object, select Plug&play Driver. Click to place the object.

Note In VEE, a VXIplug&play driver resembles a Direct I/O object.

To make measurements with the instrument, you need to configure I/O
transactions that use C functions in the VXIplug&play driver. The driver
provides you with panels to pick the right functions to use.

6. Double-click on the transaction bar labeled <Double-click to Add
Function>, and Select a Function Panel is displayed as shown
in Figure 3-30. Figure 3-31 shows the hierarchy of functions in the
function panel. Notice that Help for the item selected is displayed in the
dialog box.
Chapter 3 159

Easy Ways to Control Instruments
Using a VXIplug&play Driver
Note VEE automatically initializes the instrument. You do not have to use an
init function, as you would in other languages.

Figure 3-30. Selecting a Function for a VXIplug&play Driver

7. Click Configure Present Settings ⇒ Measurement Type ⇒
Measurement Type Setup. The Edit Function Panel is
displayed. Under func, click to display the drop-down list. Select the
default DC Voltage, as shown in Figure 3-31.
160 Chapter 3

Easy Ways to Control Instruments
Using a VXIplug&play Driver
Figure 3-31. The HPE1412 Edit Function Panel

8. Click OK. The To/From Instrument object now contains an entry for
hpe1412_configure(instruHandle,hpe1412_CONF_VOLT_DC),
as shown in Figure 3-32.

Figure 3-32. DC Voltage Function in VXIplug&play Object
Chapter 3 161

Easy Ways to Control Instruments
Using a VXIplug&play Driver
9. In the To/From Instrument object, double-click to add a function and
select Take Measurement under Measure. Click on the
Configuration folder to display the dialog box shown in Figure 3-33.

Figure 3-33. Configuration Folder in Edit Function Panel

10.Click OK. A second function call is listed in the To/From Instrument
object as shown in Figure 3-34.

Figure 3-34. HPE1412 Driver Ready for a DC Reading
162 Chapter 3

Easy Ways to Control Instruments
Other I/O Features
Other I/O Features

� Explore the full power of VEE’s I/O capabilities in the I/O ⇒
Advanced I/O submenu: Interface Operations, Instrument
Event, Interface Event, and MultiInstrument Direct I/O.

� You can display, print, or store bus activity for debugging with the Bus
I/O Monitor in the I/O menu.

� VEE includes an ActiveX Automation server to programmatically find
instruments. For further information, see the VEE OneLab Advanced
Techniques manual.

� You can also change I/O configurations programmatically at run time.
For further information, see the VEE OneLab Advanced Techniques
manual.
Chapter 3 163

Easy Ways to Control Instruments
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review the
appropriate topics, if necessary, before going on to the next chapter.

� Explain the benefits of using instrument drivers and Direct I/O.

� Explain the process for controlling instruments.

� Configure an instrument for a state driver.

� Configure an instrument for Direct I/O.

� Change settings on an instrument driver.

� Add and delete component inputs and outputs.

� Move to different panels on an instrument driver.

� Use Direct I/O to write commands to an instrument.

� Use Direct I/O to read data from an instrument.

� Upload and download instrument states using learn strings.

� Use VXIplug&play drivers to communicate with an instrument.

� Explain three methods for controlling PC plug-in boards.
164 Chapter 3

4

Analyzing and Displaying Test Data

Analyzing and Displaying Test Data
Analyzing and Displaying Test Data

In this chapter you will learn about:

� VEE data types

� VEE analysis capabilities

� Using math objects

� Using the Formula object

� Using the MATLAB Script object

� VEE display capabilities

� Customizing displays

Average Time to Complete: 1.5 hours
166 Chapter 4

Analyzing and Displaying Test Data
Overview
Overview
In this chapter, you will learn about VEE analytical and display capabilities.
You will learn how to locate the right math objects for your applications and
how to display test results, so that you can turn data into useful information
easily and quickly.

You can also use other familiar applications such as MS Excel to analyze the
data using ActiveX Automation. (For more information, refer to Chapter 6,
“Creating Reports Easily Using ActiveX,” on page 241.) You can use
display capabilities external to VEE using ActiveX controls. (For more
information, refer to “Using an ActiveX Control” on page 318). This chapter
focuses on VEE's own core set of tools and the MATLAB Script object
included with VEE.
Chapter 4 167

Analyzing and Displaying Test Data
Agilent VEE Data Shapes and Data Types
Agilent VEE Data Shapes and Data Types
In a VEE program, data is transmitted across the lines between objects and is
then processed by subsequent objects. In order to specify a set of data, VEE
packages it into a container that has both a data shape (scalar or array) and
a data type (such as Int32, Real64, or Text).

Data Shape: A scalar is a single number including numbers expressed as
two or more components such as complex numbers, and an array contains a
group of data items that can be specified as one dimensional (Array 1D), two
dimensional (Array 2D), etc.

Data Types: The VEE data types are described in Table 4-1.

In general, you will not be concerned with data types or shapes, because
most objects operate on any VEE data type and will automatically convert
data to the type required for that object. For example, if a Magnitude
Spectrum display receives a Waveform data type, VEE automatically
performs a Fast Fourier Transform to convert it from the time domain into
the frequency domain.

Occasionally, however, an object requires a particular data type so it is good
to be aware of them. You will also want to be aware of the differences in
supported data types between VEE and MATLAB. (For more information,
refer to the section “Working with Data Types” on page 185.)

The following are brief descriptions of VEE data types that you can read
through quickly. Issues involving using these data types is explained in
subsequent chapters.

Table 4-1. Agilent VEE Data Types

Data Type Description

UInt8 Unsigned byte 0 to 255.

Int16 A 16-bit two’s complement integer (-32768 to
32767).
168 Chapter 4

Analyzing and Displaying Test Data
Agilent VEE Data Shapes and Data Types
Int32 A 32-bit two’s complement integer (-2147483648
to 2147483647).

Real32 A 32-bit floating point number that conforms to the
IEEE 754 standard (+/-3.40282347E+/-38).

Real64 A 64-bit floating point number that conforms to the
IEEE 754 standard (+/- 1.797693138623157
E308).

PComplex A magnitude and phase component in the form
(mag, @phase). Phase is set by default to
degrees, but can be set to radians or gradians with
the File ⇒ Default Preferences ⇒ Trig Mode
setting.

Complex A rectangular or Cartesian complex number
having a real and imaginary component in the
form (real, imag). Each component is Real64. For
example, the complex number 1 + 2i is
represented as (1,2).

Waveform A composite data type of time domain values that
contains the Real64 values of evenly-spaced,
linear points and the total time span of the
waveform. The data shape of a Waveform must
be a one-dimensional array (Array 1D).

Spectrum A composite data type of frequency domain values
that contains the PComplex values of points and
the minimum and maximum frequency values.
The domain data can be mapped as log or linear.
The data shape of a Spectrum must be a one-
dimensional array (Array 1D).

Coord A composite data type that contains at least two
components in the form (x,y,...). Each component
is Real64. The data shape of a coord must be a
Scalar or an Array 1D.

Table 4-1. Agilent VEE Data Types (Continued)

Data Type Description
Chapter 4 169

Analyzing and Displaying Test Data
Agilent VEE Data Shapes and Data Types
Note Investigate I/O ⇒ To/From Socket for sharing data in mixed
environments.

Enum A text string that has an associated integer value.
You can access the integer value with the
ordinal(x) function.

Text A string of alphanumeric characters.

Record A composite data type with a field for each data
type. Each field has a name and a container,
which can be of any type and shape (including
Record).

Object Used only for ActiveX Automation and Controls, a
reference to an ActiveX control or a reference
returned from an Automation call. Literally, this is
a reference to an IDispatch or IUnknown interface.

Variant Used only for ActiveX Automation and Controls, a
data type that is required for some ActiveX
method calls as a By Ref parameter type.

Table 4-1. Agilent VEE Data Types (Continued)

Data Type Description
170 Chapter 4

Analyzing and Displaying Test Data
Agilent VEE Analysis Capabilities
Agilent VEE Analysis Capabilities
VEE supports common math operations and hundreds of other functions. In
addition, VEE also includes the MATLAB Script feature. The MATLAB
Script feature is a subset of the standard full-featured MATLAB from The
MathWorks. It provides additional mathematical capabilities in VEE
including Signal Processing, advanced mathematics, data analysis, and
scientific and engineering graphics. The MATLAB Script feature is fully
integrated with VEE, and you can include MATLAB Script objects in any
VEE program.

If neither VEE nor MATLAB have a math function you need, you still have
several options available. You can create the function with the Formula
object, which is discussed later in this chapter, you can write the function in
a compiled language such as C and link it to VEE, or you can communicate
with another software application from VEE.
Chapter 4 171

Analyzing and Displaying Test Data
Using Built-In Math Objects
Using Built-In Math Objects
In the VEE Device ⇒ Function & Object Browser, you can access
built-in (preprogrammed) mathematical expressions for both VEE and
MATLAB.

Accessing a Built-in Operator or Function

To access VEE mathematical operators and functions, select Device ⇒
Function & Object Browser. For example, to create a formula that
returns a random number in a specified range, select Type: Built-in
Functions, Category: Probability & Statistics, and
Functions: random, as shown in Figure 4-1.

Figure 4-1. A VEE Function in the Function & Object Browser

Notice that the Function & Object Browser displays a brief description
of the current selection, as shown in Figure 4-1. You can also click on the
Help button for a more detailed description of the current selection and get
information such as the definition, use, syntax and examples.

description
of function

Help topic for current selection
172 Chapter 4

Analyzing and Displaying Test Data
Using Built-In Math Objects
To access MATLAB operators and functions, select Device ⇒ Function
& Object Browser, and under Type: select MATLAB Functions. For
example, to convert roots to polynomials, select Type: MATLAB
Functions, Category: Interpolation & Polynomials, and
Functions: poly as shown in Figure 4-2.

Figure 4-2. A MATLAB Function in the Function & Object Browser

Again, a brief description of the current selection is displayed in the
Function & Object Browser, and clicking on Help will display a more
detailed description about the current selection. The MATLAB Runtime
Engine and Script is discussed more in the section “Using MATLAB Script
in Agilent VEE” on page 181.

Lab 4-1: Calculating Standard Deviation

Generate a cosine waveform of at a frequency of 1 kHz, amplitude of 1 V, a
time span of 20 ms, represented by 256 points. Calculate its standard
deviation and display it.

1. Select Device ⇒ Virtual Source ⇒ Function Generator. Set
the Frequency appropriately and iconize it.
Chapter 4 173

Analyzing and Displaying Test Data
Using Built-In Math Objects
2. Select Device ⇒ Function & Object Browser, then select
Built-in Functions, Probability & Statistics, and sdev.
Click Create Formula.

Note You can go directly to the Function & Object Browser dialog box by
pressing the fx icon on the tool bar, shown in Figure 4-3, or by pressing
Ctrl-I.

Figure 4-3. Opening Function and Object Browser from fx Icon

3. Open the object menu for sdev() to consult Help.

Note The sdev(x) object is defined as the square root of the variance of x, and x
may be of the type UInt8, Int16, Int32, Real32, Real64, Coord, or
Waveform. The Function Generator outputs a Waveform data type.

4. Connect the Function Generator to sdev(x).

5. Select Display ⇒ AlphaNumeric and connect it to the sdev(x) data
output pin.

6. Run the program. It should look like Figure 4-4.

Figure 4-4. Calculating Standard Deviation

Function and Object Browser Icon
174 Chapter 4

Analyzing and Displaying Test Data
Creating Expressions with the Formula Object
Creating Expressions with the Formula
Object
The Formula object can be used to write mathematical expressions in VEE.
The variables in the expression are the data input pin names or global
variables. The result of the evaluation of the expression will be put on the
data output pin.

Figure 4-5 shows a Formula object. The input field for the expression is in
the center of the object. A default expression (2*A+3) indicates where to
enter the formula. Just double-click the field to type in a different
expression.

Note You can type in a Formula expression on more than one line. If a Formula
expression contains a Return, it is interpreted as a multi-line single
expression. If a Formula contains statements separated by semi-colons (;),
they are interpreted as multiple expressions in the Formula.

You can also use standard editing commands to edit expressions in a
Formula. For example, you can drag the mouse to highlight characters, use
Ctrl-C for copying the characters, Ctrl-V for pasting, and Ctrl-X for deleting.

Figure 4-5. The Formula Object

Note All the functions created from the Devices ⇒ Function & Object
Browser Built-in type are simply Formulas that already have their
expressions set appropriately. They can be modified to combine functions
and add (or delete) inputs. You can also do multiple-line entry in the
Formula object, and assign values to output terminals.

Input field
Chapter 4 175

Analyzing and Displaying Test Data
Creating Expressions with the Formula Object
Evaluating an Expression with the Formula Object

In this example, you will evaluate the expression, 2*A^6-B, where A=2 and
B=1. (Notice the ^ sign for exponentiation.)

Note The variable names are not case-sensitive.

1. Select Device ⇒ Formula. Click the Formula input field and type
2*A^6-B.

2. Place the mouse pointer over the data input area (but not right over the A
input) and press Ctrl-A to add an input pin.

Note It will be labeled B by default, but you can rename it.

3. Select Data ⇒ Constant ⇒ Int32, clone it by selecting Clone
from the object menu, and connect the two Int32 objects to the Formula
inputs A and B.

4. Enter 2 in the A Int32 input box and 1 in the B Int32 input box.

5. Select Display ⇒ AlphaNumeric and connect it to the output of
Formula, and run the program. It should display the result 127, as shown
in Figure 4-6.

Figure 4-6. Evaluating an Expression
176 Chapter 4

Analyzing and Displaying Test Data
Creating Expressions with the Formula Object
Using an Agilent VEE Function in the Formula Object

This example generates a cosine wave and calculates the standard deviation
and root mean square using the Formula object.

1. Select the Function Generator, Formula, and AlphaNumeric
objects and connect them together using their data pins.

2. Clone the Formula object by opening the object menu and selecting
Clone, and place it just below the first one. Connect the Function
Generator data output pin to the second Formula object.

3. Clone another AlphaNumeric display and connect it to the second
Formula object.

4. Enter sdev(A) in the first Formula object, and rms (A) in the second
Formula object.

sdev(A) and rms (A) are the two math functions from the Device ⇒
Function & Object Browser dialog box. Notice that they can be
called as functions or independent objects, and they will perform in the
same way.

5. Run the program. The program displays the same answers when these
functions are put into the Formula object as it did when they were used
as independent objects, as shown in Figure 4-7.

Figure 4-7. Formula Examples Using VEE Functions
Chapter 4 177

Analyzing and Displaying Test Data
Creating Expressions with the Formula Object
Now calculate the standard deviation and root mean square using only one
Formula object. Formulas can have multiple output terminals with values
assigned to them.

6. Double-click the object menu to Cut one of the Formula objects.

7. In the remaining Formula object, change the expression to
B=sdev(A);
C=rms(A)

Note When a Formula object contains multiple expressions, you must put a
semicolon at the end of an expression to distinguish it from the next
expression. For example, in the formula B=sdev(A); the semi-colon
indicates the end of the expression.

Note You can put line breaks at any point in a Formula object. The formula is
read as one expression as long as there are no semi-colons. For example, you
could enter a single expression as

B=sdev
(A)

You can also add spaces in the formula to improve readability.

8. In the Formula object, add an output terminal. Rename the output
terminals B and C. Connect output terminal B to one of the
Alphanumeric objects, and output terminal C to the other
Alphanumeric object.

9. Run the program. It should look like Figure 4-8.
178 Chapter 4

Analyzing and Displaying Test Data
Creating Expressions with the Formula Object
Figure 4-8. VEE Functions Using One Formula Object

On Your Own

Complete the following exercises and check the results as shown in Figure
4-9.

1. Create an array of numbers from 1 to 2048 using the ramp object in the
Generate category of Built-in Functions. Calculate the standard
deviation of this array and display it.

2. Do the same exercise described in the previous step, using the ramp()
function in a Formula object instead of the ramp object.

3. Do the same exercise described in the previous step by nesting the
functions. Use only two objects.
Chapter 4 179

Analyzing and Displaying Test Data
Creating Expressions with the Formula Object
Figure 4-9. On Your Own Solution: Ramp and SDEV

For the second and third exercises, you have to delete the input terminal A
on the Formula object to avoid an error message, because all data input pins
must be connected and have data before an object can operate.
180 Chapter 4

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
Using MATLAB Script in Agilent VEE
VEE includes the MATLAB Script object, which gives you access to the
functionality of MATLAB. VEE can pass data to the MATLAB Script
Engine and receive data back, enabling you to include MATLAB
mathematical functions in VEE programs.

Note If you already have MATLAB installed, VEE will use your installed
MATLAB to process MATLAB Script. However, if you do not have the
Signal Processing Toolbox, you will not be able to use those functions from
VEE unless the MATLAB Script Engine that ships with VEE is registered.
To register MATLAB, change directory (CD) to
<VEE_installation_dir>\MATLAB\bin and execute
MATLAB.exe /regserver.

Some uses of the MATLAB Script object include:

� Letting MATLAB operate on VEE-generated data.
� Returning results from the MATLAB Script object and using the results

in other parts of the VEE program.
� Performing sophisticated filter design and implementation in the

MATLAB Script object by using MATLAB’s Signal Processing Toolbox
functionality.

� Visualizing data using 2-D or 3-D graphs.

Figure 4-10 shows how the MATLAB Script object appears in a VEE
program. When the MATLAB Script program executes, it generates the data
shown in the Alphanumeric object.
Chapter 4 181

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
Figure 4-10. MATLAB Script Object in a VEE Program
182 Chapter 4

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
Figure 4-11 shows the graph that is produced when the program runs.

Figure 4-11. Graph Generated by the Program

When you include MATLAB Script objects in a VEE program, VEE calls
the MATLAB Script Engine to perform the operations in the MATLAB
Script objects. Information is passed from VEE to MATLAB and back
again. Some notes about MATLAB:

� The first MATLAB Script object that executes in a program opens a
single MATLAB session. All other instances of MATLAB Script objects
share the session. MATLAB Script objects can therefore share global
variables in the MATLAB workspace.

� VEE does not perform any syntax checking of MATLAB commands
before the MATLAB Script Engine is called. Errors and warnings
generated by MATLAB are shown in the regular VEE dialog boxes, just
like any other VEE error or caution.
Chapter 4 183

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
� Unlike VEE, MATLAB is case sensitive. If you name a MATLAB Script
object input or output terminal with a capital X, be sure to use a capital X
in MATLAB, not lower-case x.

� Only some VEE data types are allowed as MATLAB script inputs. This
is discussed in more detail in a following section.

Including a MATLAB Script Object in Agilent VEE

When you use a MATLAB object in a VEE program, it looks like a VEE
Formula object. There are two ways to add a MATLAB Script object to a
program:

1. Select Device ⇒ MATLAB Script and click to place the object in the
program. This creates a default MATLAB Script object that you can edit
for your purposes.

-OR-

Select Device ⇒ Function & Object Browser, and select Type:
MATLAB Functions. Choose a predefined MATLAB function and click
Create Formula. Click to place the object in the program. Figure 4-12
shows some predefined MATLAB functions that could be added to a
VEE program.

Figure 4-12. Adding Predefined MATLAB Objects to a VEE Program
184 Chapter 4

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
Notice that each object is named MATLAB Script<function name> to
help you distinguish it from other VEE formula objects. Each object
already includes the function it will perform, and the input and output
pins that are likely to be needed, just like built-in VEE formula objects.
You can also edit MATLAB Script objects exactly as you can edit any
other VEE object.

Note For more information about MATLAB functions, from the main VEE
window, select Help ⇒ MATLAB Script ⇒ Help Desk.

Working with Data Types

Only a subset of the VEE data types are supported as inputs and outputs of
MATLAB objects.

VEE automatically converts some one-dimensional arrays to make it more
convenient for programs that contain both VEE and MATLAB functions.
For example, a VEE one-dimensional text array will automatically convert
to a two-dimensional character array when it is input to a MATLAB Script
object, and a character one-dimensional array from a MATLAB Script
object will automatically convert to a Text Scalar when it is output from the
MATLAB Script object.

Note For a complete listing and description of the automatic conversions between
VEE data types and MATLAB data types, refer to the VEE online Help.

You can also use input terminal data type constraints to ensure that the data
input from another object is converted to a supported type, as shown in the
following example.

1. Select Data ⇒ Constant ⇒ Int32 and click to place the object.
Change the value to 7. Clone the object and place the second Int32
under the first. Change its value to 20.

2. Select Device ⇒ MATLAB Script and place the object to the right of
the constant objects.
Chapter 4 185

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
3. Select Display Alphanumeric and place it to the right of the MATLAB
Script object.

4. Connect the output pin from the top Int32 object to the input pin A of
the MATLAB Script object. Connect the output pin from the bottom
Int32 object to the input pin B of the MATLAB Script object. Connect
the output pin from the MATLAB Script object to the input pin of the
Alphanumeric object.

Run the program. It generates a VEE Runtime Error stating the expected
input was a Real64, Complex, Waveform, or Text, and Int32 input
was received instead.

To avoid errors like this, change the input terminal data type on the
MATLAB Script object.

5. Double-click on terminal A to open the Input Terminal
Information dialog box. Click on Required Type: to display the
drop-down menu, select Real64, and click OK. Double-click on terminal
B and change it to a Real64 as well, as shown in Figure 4-13.

6. Run the program. Now the Int32 data is automatically converted to
Real64 on the input pin before it is passed to MATLAB.
186 Chapter 4

Analyzing and Displaying Test Data
Using MATLAB Script in Agilent VEE
Figure 4-13. Changing Input Terminal Data Type
Chapter 4 187

Analyzing and Displaying Test Data
Displaying Test Data
Displaying Test Data
Table 4-2 describes the display capabilities for the different VEE objects.

Table 4-2. Displays

Display Description

Alphanumeric Display values as text or numbers. Requires
SCALAR, ARRAY 1D, or ARRAY 2D.

Beep Gives an audible tone to highlight a place in your
program.

Complex Plane Displays Complex, Polar Complex (PComplex), or
Coord data values on a Real vs. Imaginary axis.

Indicator=>> Meter,
Thermometer, Fill
Bar, Tank, Color
Alarm

All of these indicators display numbers with a
graphical representation suggested by their
names. They all have color-coded ranges - usually
three, but the meter has five. The Color Alarm can
simulate an LED with a text message flashing up
on the alarm in each range.

Label An object used to put a text label on the Panel
View. The colors and fonts may be easily adjusted
through Properties... in the object menu while in
the Panel View.

Logging
Alphanumeric

Displays values as text or numbers when
repeatedly logged. Requires SCALAR or ARRAY
1D.

Note Pad Uses a text note to clarify a program.

Picture (PC) An object used to put a graphic image on the
Panel View. The formats supported are: *.BMP
(bitmaps), *.GIF (GIF87a and GIF89), *.ICN (X11
bitmap), *.JPEG, *.PNG, and *.WMF (Windows
Meta File)

Polar Plot Graphically displays data on a polar scale when
separate information is available for radius and
angle data.
188 Chapter 4

Analyzing and Displaying Test Data
Displaying Test Data
Spectrum (Freq) A menu that contains frequency domain displays:
Magnitude Spectrum, Phase Spectrum,
Magnitude vs. Phase (Polar), and Magnitude vs.
Phase (Smith). Inputs must be Waveform,
Spectrum, or an array of Coords. Waveform inputs
are automatically changed to the frequency
domain with a Fast Fourier Transform (fft).

Strip Chart Graphically displays the recent history of data that
is continuously generated while the program runs.
For each y input value, the x value is incremented
by a specified Step size. When new data runs off
the right side of the display, the display
automatically scrolls to show you the latest data.

Waveform (Time) Graphically displays Waveforms or Spectrums in
the real time domain. Spectrums are automatically
converted to the time domain using an Inverse
Fast Fourier Transform (ifft). The x axis is the
sampling units of the input waveform.

X vs. Y Plot Graphically displays values when separate data
information is available for X and Y data.

XY Trace Graphically displays mapped arrays or a set of
values when y data is generated with evenly-
spaced x values. The x value that is automatically
generated depends on the data type of the trace
data. For example, a Real trace would generate
evenly-spaced Real x values; whereas, a
Waveform trace would generate x values for time.

Table 4-2. Displays (Continued)

Display Description
Chapter 4 189

Analyzing and Displaying Test Data
Customizing Test Data Displays
Customizing Test Data Displays
Displays may be customized in a variety of ways. Not only can you label,
move and size displays like all VEE objects, but you can also change the x/y
scales, modify the traces, add markers, or zoom in on parts of the graphical
display.

The following example illustrates some of these features. It uses the Noise
Generator to generate a waveform, and then displays it with the
Waveform (Time) display. The example also describes how to change the
X scale, zoom in on a wave segment, and use the markers to measure the
distances between points on the waveform. The same principles may be
applied to all the graphical displays.

Displaying a Waveform

1. Select Device ⇒ Virtual Source ⇒ Noise Generator.

2. Select Display ⇒ Waveform (Time).

3. Connect the data output of the Noise Generator to the data input of
Waveform (Time) and run the program. It should look like Figure 4-14.
190 Chapter 4

Analyzing and Displaying Test Data
Customizing Test Data Displays
Figure 4-14. Displaying a Waveform

Changing the X and Y Scales

1. Double-click the Waveform (Time) title bar to get the Y Plot
Properties box, select the Scales folder, select 20m for the X
Maximum and enter 1m.

This alters the time span of the display from 20 milliseconds to 1
millisecond.

2. Double-click the Minimum field on the Y axis where it says -1, and enter
- .5. Click OK.

Zooming in on Part of the Waveform

1. Open the Waveform (Time) object menu and click Zoom ⇒ In.

The cursor becomes a small right angle. By clicking and dragging, you
can draw a square on the graph outlining the area you want to enlarge.

2. Outline an area of the waveform including several peaks, and release the
mouse button.
Chapter 4 191

Analyzing and Displaying Test Data
Customizing Test Data Displays
The display zooms in to this selected area of the waveform. Notice the x
and y scales change automatically.

Adding Delta Markers to the Display

1. Move to the open view on the Noise Generator.

a. Change the Num Points setting to 16. Run the program again.

b. Open the Waveform (Time) object menu and select Properties
(or just double-click on the title bar), then under Markers, click
Delta. Then click OK.

Note You can get and set the values of the markers at runtime. See the online
Help topic under Contents and Index ⇒ How Do I... ⇒ Display
Data for more information.

You will see two white arrows pointing up and down at one of the data
points on the waveform. Also, notice that the display records the x and y
coordinates of these markers at the bottom of the display. To measure the x
or y distance between two peaks, click-and-drag the arrows to the peaks you
want to measure. You will see one of the markers move to those new peaks
with the new coordinates recorded at the bottom of the display, as shown in
Figure 4-15.
192 Chapter 4

Analyzing and Displaying Test Data
Customizing Test Data Displays
Figure 4-15. Delta Markers on a Waveform Display

VEE will automatically interpolate between waveform data points. Open the
object menu, select Properties, then under Markers, click
Interpolate.

Changing the Color of the Trace

1. Double-click the title bar to get to Properties, then click the Traces
folder tab.

You can select the color, line type, and point type for the Trace selected
in this folder.

Note You can also change these values at run time by using the Traces or
Scales control inputs. For more information, see the VEE OneLab
Advanced Techniques manual.

2. Click OK for the selected color. Then click OK to exit the Properties
box.
Chapter 4 193

Analyzing and Displaying Test Data
Customizing Test Data Displays
The trace will now be displayed in the new color. Other display
characteristics such as Panel Layout, Grid Type, Clear Control, and Add
Right Scale may be customized in a similar fashion as the features in the
exercise above.

Note VEE also includes Plot in the display object menus, which allows you to
plot test results on the display without printing out the rest of the program.

For Additional Practice

To learn about other VEE objects and gain more practice, do the exercises in
Appendix A, “Additional Lab Exercises,” on page 351. Solutions are
provided with a discussion of key points.
194 Chapter 4

Analyzing and Displaying Test Data
Chapter Checklist
Chapter Checklist
You should now be able to do the following tasks. Review topics as needed,
before going on to the next chapter.

� Describe the main data types in VEE.

� Describe some of the main areas of analytical capabilities in VEE.

� Find an online Help explanation for any object in the Function &
Browser dialog box.

� Describe the relationship between input pins and variables in a VEE math
object.

� Evaluate a mathematical expression using the Formula object, and then
evaluate two expressions using the Formula object. (Remember to use a
semicolon after the first line.)

� Use a VEE function in a mathematical expression in the Formula object.

� Use the MATLAB Script object.

� Describe major display capabilities in VEE.

� Customize a graphical display in terms of the scales used, the part of the
waveform seen, the markers used, and the color of the trace.
Chapter 4 195

Analyzing and Displaying Test Data
Chapter Checklist
196 Chapter 4

5

Storing and Retrieving Test Results

Storing and Retrieving Test Results
Storing and Retrieving Test Results

In this chapter you will learn about:

� Putting test data into arrays

� Using the Collector object

� Using the To/From File objects

� Creating mixed data types using Records

� Performing search and sort operations using DataSets

� Creating simple test databases using the Dataset objects

Average Time to Complete: 2 hours
198 Chapter 5

Storing and Retrieving Test Results
Overview
Overview
In this chapter, you will learn the fundamentals of storing and retrieving test
data. You will create arrays of the right data type and size to hold your test
results, and then access the data or part of the data for analysis or display.

This chapter also describes the To/From File objects, the Record data
type, and Dataset files. The To File and From File objects read data to
and from files based on I/O transactions. The Record data type can be used
to store several types of data in a single structure. You can use the Dataset
to store one or more records in a file, and perform search and sort operations
on datasets.

Note The To File object is also described in “Using Data Files” on page 85 of
Chapter 2, “Agilent VEE Programming Techniques.”
Chapter 5 199

Storing and Retrieving Test Results
Using Arrays to Store Test Results
Using Arrays to Store Test Results
Data types can be stored in two ways:

� Scalar values (that is, a single number such as 9 or (32, @10))

-OR-

� Arrays from 1 to 10 dimensions.

Note The overview of VEE data types is described in Chapter 4, “Analyzing and
Displaying Test Data.”

Indexing for arrays is zero-based in VEE, and brackets are used to indicate
the position of the array element. For example, if the array A holds the
elements [4, 5, 6], then

A[0] = 4, A[1] = 5, and A[2] = 6

The syntax for arrays is as follows:

The syntax to access elements of an array can be used in the Formula
object or any expression field, such as those in the To/From File object.

colon Used to indicate a range of elements. For instance,
A[0:2] = [4, 5, 6] in the array above.

asterisk (*) a wildcard to specify all elements from a particular array
dimension. A[*] returns all elements of array A.

commas In the subarray syntax, commas are used to separate array
dimensions. If B is a two-dimensional array with three
elements in each dimension, B[1,0] returns the first
element in the second row of B.
200 Chapter 5

Storing and Retrieving Test Results
Using Arrays to Store Test Results
Lab 5-1: Creating an Array for Test Results

The easiest way to create an array is to use the Collector object.

This exercise uses the For Count object to simulate four readings from an
instrument. The readings are put into an array and the results are printed.
The principles will be the same regardless of the data type or the size of the
array, since the Collector will take any data type and create the array size
automatically depending on the number of elements sent.

1. Select Flow ⇒ Repeat ⇒ For Count, Data ⇒ Collector, and
Display ⇒ AlphaNumeric.

2. Click n+1 Dim in the Collector to change the selection to 1 Dim
Array.

3. Connect the For Count data output pin to the Data input pin on the
Collector.

4. Connect the For Count sequence output pin to the XEQ input pin on the
Collector.

about the
For Count
object

For Count outputs increasing integer values
starting at 0 depending on the number of iterations
you specify in the input field. Highlight the default
number 10 by double-clicking, then type 4. For
Count will output 0, 1, 2, and 3.

about the
Collector
object

The Collector receives data values through its
Data input terminal. When you finish collecting
data, you “ping” the XEQ terminal to tell the
Collector to construct the array and output it. You
can use the For Count sequence output pin to ping
the Collector XEQ pin. The Collector displays
a button that toggles between a 1 Dim Array and
n+1 Dim Array.

Double-click the Collector to get the open view,
and read through Help in the object menu to
understand the object.
Chapter 5 201

Storing and Retrieving Test Results
Using Arrays to Store Test Results
The XEQ pin, a special trigger pin that exists on several different objects,
determines when the object executes. In this case, you want the object to
fire after all of the data for the array has been collected.

5. Connect the Collector data output pin to the AlphaNumeric data
input pin.

6. Enlarge AlphaNumeric to accommodate the array by clicking and
dragging on any corner of the object. (You could also have enlarged
AlphaNumeric when you first selected it by using “click and drag” on
the object outline.)

7. Run the program. It should look like Figure 5-1.

Figure 5-1. The Collector Creating an Array

Lab 5-2: Extracting Values from an Array

To extract values from an array, you can either use the bracket notation in an
expression, or use the Access Array ⇒ Get Values object. The
following example uses expressions in the Formula object. You will add
several objects to the program in this exercise.

1. Delete the data line between the Collector and AlphaNumeric by
placing the mouse pointer over the line, pressing Shift-Ctrl, and then
clicking the left mouse button. Then iconize the Collector.
202 Chapter 5

Storing and Retrieving Test Results
Using Arrays to Store Test Results
2. Select Device ⇒ Formula and clone it. Move AlphaNumeric to the
right, and put both Formula objects to the right of the Collector.

3. Connect the Collector data output to the data inputs of the Formula
objects. Enter A[2] in the upper Formula input field, and A[1:3] in the
lower Formula input field.

A[2] will extract the third element of the array as a Scalar; A[1:3] will
return a sub-array of three elements holding the second, third, and fourth
elements of A (meaning the array on the A input terminal).

4. Clone AlphaNumeric and connect a display to each Formula object.

5. Run the program. It should look like Figure 5-2.

Figure 5-2. Extracting Array Elements with Expressions
Chapter 5 203

Storing and Retrieving Test Results
Using the To/From File Objects
Using the To/From File Objects
The To File and From File objects read data to and from files based on
I/O transactions. They have the following characteristics:

� A data file is opened on the first READ or WRITE transaction. When the
program ends, VEE closes any open files automatically.

� VEE maintains one read pointer and one write pointer per file regardless
of how many objects are accessing the file. The read pointer identifies the
next data item to be read, and the write pointer indicates where the next
data item should be written.

� The To/From File objects can append data to existing files or
overwrite them. If the Clear File at PreRun & Open setting is
checked in the open view of the To File object, then the write pointer
starts at the beginning of the file. If not, the pointer is positioned at the
end of the existing file. Each WRITE transaction appends information to
the file at the location of the write pointer. If an EXECUTE CLEAR
transaction is performed, the write pointer moves to the beginning of the
file and erases its contents.

� A read pointer starts at the beginning of a file, and advances through the
data depending on the READ transactions. You may perform an EXECUTE
REWIND in the From File object to move the pointer back to the
beginning of the file without affecting any data.

Note The To File object is also described in “Using Data Files” on page 85 of
Chapter 2, “Agilent VEE Programming Techniques.”
204 Chapter 5

Storing and Retrieving Test Results
Using the To/From File Objects
Understanding I/O Transactions

I/O transactions are used by VEE to communicate with instruments, files,
strings, the operating system, interfaces, other programs, Rocky Mountain
Basic, and printers. For example, look at the To File object in Figure 5-3.

Figure 5-3. The To File Object

The To File object shown in Figure 5-3 sends data to the specified file
myFile. It can include inputs, called transactions, to accept data from a
program. For example, this To File object includes the transaction WRITE
TEXT a EOL. When you double-click the transaction, an I/O
Transaction dialog box appears as shown in Figure 5-4, which configures
the specific transaction statement.

Figure 5-4. An I/O Transaction Dialog Box

There are different forms of this dialog box depending on the object, but all
contain certain common elements, including the “actions”, the “encoding”,
the “expression list”, the “format”, and the “end-of-line” (EOL) sequence.
Chapter 5 205

Storing and Retrieving Test Results
Using the To/From File Objects
I/O Transaction Format

An I/O transaction to write data is usually in the following format:

<action> <encoding> <expression list> <format> <EOL>

Table 5-1 describes the most common actions: READ, WRITE, EXECUTE,
and WAIT.

Note There are also a number of actions for I/O ⇒ Advanced I/O
Operations that you can examine by exploring the objects in the menu.

Encodings and formats refer to the way data is packaged and sent. For
instance, a TEXT encoding sends data as ASCII characters. The TEXT
encoding could be formatted in a number of ways. For example, to send a
string of letters and numbers to a file, a WRITE TEXT STRING transaction
would send the entire string represented by ASCII characters. A WRITE
TEXT REAL transaction would only extract the Real numbers from the same
string and send them using ASCII characters for the individual digits. Table
5-2 provides brief explanations of encodings.

Table 5-1. Types of I/O Transactions

Action Explanation

READ Reads data from the specified source using the specified
encoding and format.

WRITE Writes data to the specified target using the specified
encoding format.

EXECUTE Executes a specific command. For example, EXECUTE
REWIND repositions a file read or write pointer to the
beginning of the file without erasing the contents.
EXECUTE CLOSE closes an open file.

WAIT Waits the specified number of seconds before the next
transaction.
206 Chapter 5

Storing and Retrieving Test Results
Using the To/From File Objects
In a write transaction, an “expression list” is simply a comma-separated list
of expressions that need to be evaluated to yield the data sent. The
expression may be composed of a mathematical expression, a data input
terminal name, a string constant, a VEE function, a UserFunction, or a
global variable. In a read transaction, the expression list should consist of a
comma-separated list of output terminal names that indicate where to store
the data when it is read.

In conjunction with reading data from instruments, data formats are
described in Chapter 3, “Easy Ways to Control Instruments,” on page 123.
Most of these formats apply to all I/O transactions.

EOL (end-of-line sequence of characters) may be turned on or off, and you
can specify the EOL sequence by opening the object menu of most of the
I/O ⇒ To objects and selecting Properties..., then select Data
Format, and make the changes under Separator Sequence.

Table 5-2. I/O Transaction Encoding

Encoding Explanations

TEXT Reads or writes all data types in a human-readable form
(ASCII) that can easily be edited or ported to other
software applications. VEE numeric data is automatically
converted to text.

BYTE Converts numeric data to binary integer and sends or
receives the least significant byte.

CASE Maps an enumerated value or an integer to a string and
reads/writes that string. For example, you could use
CASE to accept error numbers and write error messages.

BINARY Handles all data types in a machine-specific binary
format.

BINBLOCK Uses IEEE488.2 definite length block headers with all
VEE data types in binary files.

CONTAINER Uses VEE specific text format with all data types.
Chapter 5 207

Storing and Retrieving Test Results
Using the To/From File Objects
Lab 5-3: Using the To/From File Objects

This lab exercise describes the process of getting test data to and from files.
In this exercise, you will store and retrieve three common test result items: a
test name, a time stamp, and a one-dimensional array of Real values. The
same process will apply to all VEE data types.

Sending a Text String to a File

1. Select I/O ⇒ To ⇒ File. Set the entries as follows:

2. Double-click in the transaction area to display the I/O Transaction
dialog box. (Refer to Figure 5-3 and Figure 5-4, if necessary.)

WRITE TEXT a EOL is the default transaction. It writes the data on pin a
using TEXT encoding and a specified end-of-line sequence. VEE is not
case-sensitive. You can use lower-case or upper-case strings for data
input and data output terminal names.

Set the entries as follows:

filename Use the default file myFile. The default file
can be changed by clicking the To File input
field to get a list box of files in the home
directory.

Clear File At
PreRun & Open

Check this box. By default, VEE appends new
data to the end of an existing file. Checking the
box clears the file before new data is written.

a
(expression field)

The expression list field is highlighted and
contains the default a. Type "Test1", then
click OK. (You need the quotation marks to
indicate a Text string. If you typed Test1
without the quotation marks, VEE would
interpret this as a terminal name or global
variable name.)

WRITE Use the default WRITE.
208 Chapter 5

Storing and Retrieving Test Results
Using the To/From File Objects
3. Click OK to return to the To File object. The transaction bar should
now contain the statement WRITE TEXT "Test1" EOL. This
transaction sends the string Test1 to the specified file.

Sending a Time Stamp to a File

The function now() in the Device ⇒ Function & Object Browser
⇒ Time & Date category gives the current time expressed as a Real64
Scalar. The value of the Real is the number of seconds since 00:00 hours
on Jan. 1, 0001 AD.

Therefore, now() returns a value about 63G. VEE provides this format
because it is easier to manipulate mathematically and conserves storage
space. If you want to store the time stamp in a more readable format, use the
TIME STAMP FORMAT in the To File object. Follow these steps to send a
time stamp to a file.

1. In the same To File object, double-click in the transaction area to
display the I/O Transaction box.

2. Double-click the expression list input field to highlight the a and type
now(). The now() function sends the current time from the computer
clock in a Real format.

3. Change the Real format to the Time Stamp Format.Click the arrow
next to DEFAULT FORMAT to display the drop-down menu and select
TIME STAMP FORMAT. The I/O Transaction dialog box now
displays additional entries. Set the entries as follows:

TEXT Use the default TEXT. The encoding TEXT
will send the data using ASCII characters.

DEFAULT
FORMAT

Use DEFAULT FORMAT. The DEFAULT
FORMAT will choose an appropriate VEE
format such as STRING.

EOL ON Use the default. The default EOL sequence is
the escape character for a new line \n.

Date & Time Select Time in the drop-down menu.
Chapter 5 209

Storing and Retrieving Test Results
Using the To/From File Objects
The I/O Transaction dialog box should now look like Figure 5-5.

Figure 5-5. The TIME STAMP I/O Transaction Box

4. Click OK to return to the To File box. The second transaction bar
should now contain the statement WRITE TEXT now() TIME:HM:H12
EOL.

Sending a Real Array to a File

Create a one-dimensional array of four elements using the For Count and
Collector objects, and append it to myFile.

1. Select Flow ⇒ Repeat ⇒ For Count. Change the default value in
For Count to 4.

2. Select Data ⇒ Collector. Double-click the Collector to switch to
Open view. Connect the data output of For Count to the data input of
the Collector (the top input pin). Connect the For Count sequence
output pin to the XEQ pin (the bottom input pin) on the Collector.
Iconize the Collector.

HH:MM:SS Click and toggle to HH:MM (from the hour, minute,
and second format to the hour, minute format).

24 HOUR Click and toggle to 12 HOUR (from 24-hour format to
a.m. and p.m. format).
210 Chapter 5

Storing and Retrieving Test Results
Using the To/From File Objects
The Collector will now create the array [0, 1, 2, 3], which you
can send to the data file.

3. Using the same To File object, double-click in the transaction area. In
the I/O Transaction dialog box, open the DEFAULT FORMAT menu,
and select REAL64 FORMAT.

The I/O Transaction dialog box displays additional buttons for the
REAL64 FORMAT selection. You can leave all of the default choices, but
you might want to investigate the options for future reference.

4. Click OK to close the I/O Transaction box. The transaction bar in the
To File object should now contain the statement WRITE TEXT a
REAL64 STD EOL. Notice that VEE also automatically adds an input
terminal a.

5. Connect the output from the Collector to the input a of To File.
The program should now look like Figure 5-6. (The configured I/O
Transaction box is also displayed.)

Figure 5-6. Storing Data Using the To File Object
Chapter 5 211

Storing and Retrieving Test Results
Using the To/From File Objects
Retrieving Data with the From File Object

To retrieve data using a From File object, you must know how the data
was stored.

Note You can also store and retrieve data using To DataSet or From DataSet,
which does not require you to know the type of data in the file. Datasets are
described in the section “Using DataSets to Store and Retrieve Records” on
page 226.

In this example, the name of a test is stored in a String Format, followed
by a time stamp in Time Stamp Format and an array of Real64 numbers.
You will create three transactions in From File to read the data back into
VEE.

1. Select I/O ⇒ From ⇒ File and place it below the To File object.

2. Connect the sequence output pin of the To File object to the sequence
input pin of the From File object.

This sequence connection ensures the To File object has completed
sending data to myFile before From File begins to extract data.

3. In the From File object, leave the default data file myFile. Double-
click the transaction bar to get the I/O Transaction dialog box. Click
REAL64 FORMAT and change it to STRING FORMAT, as shown in Figure
5-7.
212 Chapter 5

Storing and Retrieving Test Results
Using the To/From File Objects
Figure 5-7. Selecting String Format

4. All of the other defaults are correct, so click OK to close the I/O
Transaction box. The transaction bar in the From File object should
now contain the statement READ TEXT x STR.

Now add two more transactions to read back the time stamp and the real
array.

5. In the same From File object, double-click below the first transaction
bar. The I/O Transaction dialog box appears. Double-click on the
expression list input field to highlight x and type y, for the second
transaction to read data back to pin y. (If this pin were left as “x” then the
second transaction would overwrite the data that the first transaction put
into “x,” instead of appending it.) Change REAL64 FORMAT to STRING
FORMAT, then click OK.

Note To read the time stamp back as a text string, use the STRING FORMAT. The
TIME STAMP FORMAT converts the time stamp data back to a Real number.
Chapter 5 213

Storing and Retrieving Test Results
Using the To/From File Objects
6. In the same From File object, double-click below the second
transaction bar to display to the I/O Transaction dialog box. Set
entries as follows:

Note If you do not know the size of an array, you may toggle SIZE to TO END.
This will read data to the end of the file without VEE knowing its exact size.
For example, you could use this feature to read the entire contents of a file as
a string array to examine the file contents.

The transaction bar in the From File object should now contain the
statements READ TEXT y STR and READ TEXT z REAL64 ARRAY:4.
Notice that VEE automatically adds the data output terminals for x, y,
and z. You can also manually add or delete input and output terminals
under object menu ⇒ Add Terminal, Delete Terminal, or using the
shortcuts Ctrl-A and Ctrl-D.

7. Select Display ⇒ AlphaNumeric and clone it twice to get three
displays. Connect the AlphaNumeric objects to the three data output
pins on From File. Enlarge the array display by clicking and dragging
the object by any corner.

Tip: You can also size the AlphaNumeric displays by clicking and
dragging the object outlines when you first select them from the menu.

8. Run the program. It should look like Figure 5-8.

(expression field) Edit x to z, so that the Real array is read back to the
Z output terminal.

SCALAR Change SCALAR to ARRAY 1D.

SIZE: Now the I/O Transaction box adds a SIZE
button. In this case, the array has four elements.
Replace 10 with 4 and click OK.
214 Chapter 5

Storing and Retrieving Test Results
Using the To/From File Objects
Figure 5-8. Retrieving Data Using the From File Object

Notice that the first Alphanumeric displays the title, the second displays the
time of the test, and the third lists the numbers in the array.
Chapter 5 215

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Using Records to Store Mixed Data Types
The Record data type can store different data types in a single data container.
Record can include any VEE data type. The data can be in the shape of a
Scalar or an Array. You can store a test name, a time stamp, and a real array
in a single data structure.

The individual elements in a Record are stored as fields and are accessed
using a dot notation. For example, Rec.Name accesses the field called Name
within a Record called Rec. In an array of records, Rec[2].Name signifies
the Name field in the third record in the array. All arrays start indexing at
zero.

There are several benefits to structuring test data using the Record data type:

� You can create logical groupings of mixed data types in a single
container, which makes a program easier to develop and maintain. For
example, you might use the following fields for a record storing test data:
test name, value returned, pass or fail indicator, time stamp, nominal
value expected, upper pass limit, lower pass limit, and a description of
the test.

� You can manipulate a single data container rather than eight separate data
containers. This makes the program simpler and more readable.

� You can store and retrieve Records from DataSets in VEE. A DataSet is
a special file created to store records. When you retrieve records from a
DataSet, you do not have to know the data types. VEE provides objects to
retrieve, sort, and search the information stored in DataSets.

Lab 5-4: Using Records

This exercise describes how to use the Record datatype. You will learn how
to build a record, how to retrieve a particular field in that record, how to set a
chosen field, and how to unbuild the entire record in a single step. This
exercise also uses the time stamp function now() in a different way.
216 Chapter 5

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Building a Record

Build a Record with three fields: the name of a test stored as a String, a
time stamp stored as a Real Scalar, and simulated test results stored as a
four element Array of Reals. When you retrieve these fields in the next
exercise, you will see that you can convert the time stamp into a number of
different formats for display.

1. Create the test name by selecting Data ⇒ Constant ⇒ Text and
entering Test1 in the input field. Rename the object Text Constant.
Iconize Text Constant.

2. Select Device ⇒ Function & Object Browser. Click Built-in
Functions under Type, Time & Date under Category, select now
under Functions, and click Create Formula. Place the object below
Text Constant.

3. Select Data ⇒ Constant ⇒ Real64 and place it below now().

You can turn this Scalar Real64 into an Array 1D by clicking
Properties... in the Real64 object menu and choosing 1D Array.

4. Open the Constant Properties box by double-clicking on the
Real64 title bar. Select 1D Array under Configuration, change the
Size to 4, then click OK.

Enter four values into this array by double-clicking next to element 0000
to highlight the first entry, then input the values 2.2, 3.3, 4.4, 5.5
using the Tab key between each entry. Iconize Real64.

5. Select Data ⇒ Build Data ⇒ Record and place it to the right of
the three other objects. Add a third data input terminal so you can input
three fields. Open each terminal by double-clicking over the terminal and
rename the three input terminals to testname, time, and data.

The Output Shape on the Build Record object toggles between
Scalar and Array. The Scalar default will be the correct choice for
the majority of situations. (For more information, see the VEE OneLab
Advanced Techniques manual.)
Chapter 5 217

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
6. Connect the Text Constant object to the testname terminal, the
now() object to the time terminal, and the Real64 object to the data
terminal on the Build Record object.

7. Run the program. Double-click on the Record data output terminal to
examine the record. It should look like Figure 5-9.

Figure 5-9. Output Terminal Information on a Record

You can see the three fields and their values. If you click on the Real64:
Array 1D button, a list box shows the actual values. Notice that the time
stamp has been stored as a Real64 Scalar. In the next exercise, you will
convert it to a more readable form. Click OK to close the Output Terminal
Information dialog box. Save the program as records.vee.
218 Chapter 5

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Getting a Field From a Record

Use the Get Field object to extract each of the three fields from the record,
then display the values for each.

1. Open the records.vee program.

2. Select Data ⇒ Access Record ⇒ Get Field. The object appears
with rec.field for a title.

The data input labeled rec will take any record regardless of the number
and type of fields. Rec.field is the default selection in the input field,
but this can edited to retrieve any field. Rec refers to the record at the
data input terminal by the same name. (Remember that VEE is not case
sensitive.)

Note The Get Field object is a Formula configured with inputs and an
expression, like the formulas in the Function & Object Browser.

3. Clone rec.field twice and place the objects to the right of Build
Record.

4. Connect Build Record data output to all three rec.field objects.

Since the three fields are stored as testname, time, and data, you will
have to edit the rec.field objects to get the appropriate field.

5. Edit the three rec.field object expression fields to rec.testname,
rec.time, and rec.data.

6. Select Display ⇒ AlphaNumeric and clone it twice. Connect the
three displays to the three rec.field objects. Resize the third display to
accommodate the real array, about three times longer than the other
objects.

7. Open the second AlphaNumeric display object menu and select
Properties, then select the Number folder. Click to the left of Global
Format to remove the check mark.
Chapter 5 219

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Set the display format. Open the Standard menu in the Real section.
Select Time Stamp and click OK.

8. Click HH:MM:SS to toggle to HH:MM. Click 24 HOUR to toggle to 12
HOUR. See Figure 5-10.

Figure 5-10. The AlphaNumeric Properties Box

9. Run the program and save it as getfield.vee. The program should
look like Figure 5-11.
220 Chapter 5

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Figure 5-11. Using the Get Field Object

Notice that the second display lists the weekday, the date, and the time
expressed in hours, minutes, and an a.m. or p.m. designation.

Setting a Field in a Record

This exercise shows how to change data in specific fields of a record.

Note You can re-use the same Record with different tests.

1. Open the getfield.vee program.

2. Delete all objects after Build Record, by selecting objects and pressing
Ctrl-X.
Chapter 5 221

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
1. Select Data ⇒ Access Record ⇒ Set Field and place it to the
right of Build Record. Connect the output from Build Record to the
rec input of Set Field. The title will be rec.field = b.

Set Field works by assigning the expression on the right side of the
assignment symbol (=) to the left hand side. Therefore, the specified field
of rec is modified to contain the value(s) from the right hand side. The
rest of the record is unchanged. You connect the incoming record to rec
and the incoming new value to b. The modified record will be put on the
data output terminal labeled rec.

Note The Set Field object is a Formula configured with inputs and an
expression, like the formulas in the Function & Object Browser.

2. Edit the expression to rec.data[*]=b to change the value of the four
element array in the data field. (You need to use the array [*] notation,
because you are changing the whole array in the field of this record.) You
will put the new values for the array on the input terminal b.

3. Select Data ⇒ Constant ⇒ Real64 and place it under the Build
Record object. Open the object menu, and select Properties. Select
1D Array under Configuration, then edit the Size to 4, and click
OK.

If the new values for the record field are contained in an array, it must
have the same size as the current array.

Enter the values 1, 2, 3, 4 into Real64 by highlighting the first entry and
using the Tab key to move to subsequent entries. (Do not press the Tab
key after the last entry.) Connect it to the Set Field (titled
rec.field=b) input labeled b.

Now use the Get Field object to extract the field rec.data from the
record and display the results.

4. Select Data ⇒ Access Record ⇒ Get Field and place the object
under the Set Field (rec.field=b) object. Edit the Get Field
object expression from rec.field to rec.data. Connect the data
output of rec.field = b to the data input of rec.field.
222 Chapter 5

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Note You could also use a Formula object with A.data in the expression field.

5. Select an AlphaNumeric display, size it to accommodate an array, and
connect it to the rec.field output pin.

6. Run the program and save it as setfield.vee. The program should
look like Figure 5-12.

Figure 5-12. Using the Set Field Object

You can modify any Record fields as shown in this example. You could
also modify part of the field. For example, try changing the expression in
rec.field = b to rec.data[1]=20. Then delete the rec.field = b
input b. Run the program again and you should see the array: 2.2, 20, 4.4,
5.5.
Chapter 5 223

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Unbuilding a Record in a Single Step

To extract all record fields and get a list of the field names and their types,
use the UnBuild Record object.

1. Open the setfield.vee program. Delete all objects after Build
Record.

2. Select Data ⇒ UnBuild Data ⇒ Record and place it under Build
Record, switch the open view, and connect the output of Build
Record to the input of UnBuild Record. Add another data output pin
to UnBuild Record and rename the A, B, and C outputs to the field
names: testname, time, and data.

3. Select an AlphaNumeric display and clone it four times. Connect the
five displays to the five output terminals on UnBuild Record. You will
have to enlarge the displays for Name List, Type List, and data to
accommodate arrays. Also, reconfigure the time display to present time
in day/month/year and hours, minutes using a 12 hour format.

4. Run the program and save it as unbuild.vee. It should look like Figure
5-13.
224 Chapter 5

Storing and Retrieving Test Results
Using Records to Store Mixed Data Types
Figure 5-13. Using the UnBuild Record Object

Notice that the Name List pin gives the names testname, time, and data
of the three fields in the record, just as the Type List identifies testname
as Text, and time and data as Real64 types.
Chapter 5 225

Storing and Retrieving Test Results
Using DataSets to Store and Retrieve Records
Using DataSets to Store and Retrieve
Records
DataSets can retrieve one or more records. VEE objects unpack the
records. Therefore, by storing records to DataSets instead of files, you do not
have to remember the data types. You can also perform sort and search
operations on the data, creating your own customized test database.

Lab 5-5: Using DataSets

A DataSet is simply an array of Records stored in a file. This exercise
shows how to get data into and out of a DataSet.

Storing and Retrieving a Record from a DataSet

This exercise creates an array of ten Records, each containing three fields
with a test name, a Real64 Scalar, and an array of Reals. It stores the
array of Records in a DataSet, and retrieves the records and displays
them.

1. Select Flow ⇒ Start. Select Flow ⇒ Repeat ⇒ For Count, and
place the object under Start. Select Device ⇒ Formula, and place
the object to the right of For Count. Connect Start to the sequence
input pin on For Count; connect the For Count data output pin to
Formula data input pin.

2. Double-click the Formula expression field to highlight the default
expression, and then type “test” + a.

When you click Start, the For Count object outputs integers zero
through nine sequentially to the A pin of Formula. In the Formula
object, the integers are added to the word “test” and output as Text
Scalars: test0, test1, test2,...,test9. These values will fill the
first fields in the ten Records.
226 Chapter 5

Storing and Retrieving Test Results
Using DataSets to Store and Retrieve Records
3. Select Data ⇒ Build Data ⇒ Record, and place the object to the
right of Formula. Add a data input pin. Connect the data output of
Formula to the A input of Build Record.

4. Select the Function & Object Browser icon from the tool bar.

a. Choose Built-in Functions, Probability & Statistics,
and random to create the random (low, high) object. Place the
object below the Formula object.

b. Delete the input terminals, and change the input parameters from low
to 0, and from high to 1.

c. Rename the object Random Number, and connect its data output to
the B terminal of Build Record.

5. Connect the Formula sequence output pin to the sequence input pin of
Random Number. Connecting the sequence pins ensures that each
iteration of the program puts a new random number into the B field of
the particular record.

6. Select Data ⇒ Constant ⇒ Real64. Place the Real64 object
below the Formula object.

a. Open the object menu and click Properties. Type Real Array for
the title, under Configuration click 1D Array, and change the
Size to 3. Click OK.

b. Highlight each entry in the array by double-clicking and typing in the
numbers 1, 2, and 3.

c. Connect the Real Array data output to the C terminal on Build
Record.

7. Select I/O ⇒ To ⇒ DataSet and place the object under Build
Record. Connect the data output of Build Record to its data input.
Leave the default file name myfile, and check Clear File At
PreRun.
Chapter 5 227

Storing and Retrieving Test Results
Using DataSets to Store and Retrieve Records
8. Run the program. It should put an array of ten records into the DataSet
called myFile, as shown in Figure 5-14.

Figure 5-14. Storing an Array of Records in a DataSet

Now retrieve the array of records and display it using the From DataSet
and Record Constant objects.

9. Select I/O ⇒ From ⇒ DataSet and place the object below For
Count. Leave the default file name, myFile. Click the Get Records
field to toggle from One to All. Finally, leave the default of 1 in the
expression field at the bottom.

With these settings, VEE looks at the DataSet in myFile and finds all the
records that fit the criterion in the expression field. If you set Get
Records to One, VEE would output the first record that met the criterion
in the expression field. The 1 signifies a TRUE condition meaning that all
of the records fit the criterion, so the entire array of records in the file will
be put on the output pin labeled Rec. Other uses of the expression field
are explained in other exercises. Consult Help in the object menu for
more information.

Connect the For Count sequence output pin to the sequence input on
the From Data Set object. This ensures the part of the program that
sends data to myFile executes before the data is read from the file. You
can turn on Show Data Flow to show the order of events.
228 Chapter 5

Storing and Retrieving Test Results
Using DataSets to Store and Retrieve Records
10.Select Data ⇒ Constant ⇒ Record and place the object below To
Data Set. Open the object menu and select Add Terminal ⇒
Control Input. Click Default Value from the list box presented,
then click OK. Resize the Record object to be larger, so you can see the
results when you run the program.

The record received will become the default value. In this case, Record
will receive an array of records from the From Data Set object, and it
will format itself to display that array of records.

11.Connect the From Data Set output pin Rec to the Default Value
pin on Record. If you would like to see this terminal, open the object
menu and select Properties, then Show Terminals, then OK. A
dotted line appears between From Data Set and Record.

Note A dotted line between two objects indicates a control line.

12.Run the program and save it as dataset1.vee. The program should
look like Figure 5-15.
Chapter 5 229

Storing and Retrieving Test Results
Using DataSets to Store and Retrieve Records
Figure 5-15. Storing and Retrieving Data Using DataSets

Note A From Data Set object must include at least one record that meets the
criterion, or VEE issues an error message. To avoid an error, add an EOF
(end-of-file) output pin to the object which activates if no records meet the
criterion. You can then add actions to the program when the EOF results.
230 Chapter 5

Storing and Retrieving Test Results
Customizing a Simple Test Database
Customizing a Simple Test Database
You can search and sort a DataSet for information, such as test name, time
stampls, test parameters, test values, pass or fail indicators, and test
descriptions. Therefore, DataSet records can act as a test database. To
search for information, you can use the From Data Set object as follows:

� The expression field in the From Data Set object is used for search
operations.

� The function sort() can be used to sort records using a specified field.

Lab 5-6: Using Search and Sort Operations with
DataSets

In this exercise, you will learn how to search a DataSet for information,
create an operator interface for the search operation, and program a sort
operation.

Performing a Search Operation With DataSets

1. Open the dataset1.vee program.

2. Double-click on the expression field at the bottom of the From Data
Set object to highlight the current expression, 1. Enter Rec.B>=0.5.
The object will now output all records, where field B (the random number
in our code) is greater or equal to 0.5.

3. Add an EOF pin that will fire if no records match the criterion in the
expression field. Place the cursor over the data output area of the From
Data Set object, and press Ctrl-A. An EOF output pin is added to the
From Data Set object, as shown in Figure 5-16.

Note To add an EOF pin, you could also open the object menu, and click Add
Terminal ⇒ Data Output....

4. Run the program and save it as dataset2.vee.
Chapter 5 231

Storing and Retrieving Test Results
Customizing a Simple Test Database
Figure 5-16. A Search Operation with DataSets

Creating an Operator Interface for a Search Operation

This exercise adds a menu for an operator to extract data from the test results
database.

The specifications of the program are as follows:

� Provide a test menu that will allow operators to select a particular test
from test0 through test9, from which they want all related test data.

� Display the specified test results with the fields and values labeled. The
operator should be able to interact with the display to gain more detailed
information.

� Include clear operating instructions.
232 Chapter 5

Storing and Retrieving Test Results
Customizing a Simple Test Database
Follow these steps to create the program.

1. Open the dataset2.vee program.

Add a control input that will allow you to input the expression in the From
Data Set object programmatically.

2. Open the From Data Set object menu and select Add Terminal...
⇒ Control Input.... Select Formula from the menu presented. A
Formula input terminal appears. Click the Get records field to toggle
from All to One to access one test record at a time.

You want the user to select a particular test name. The test names are
located in field A of all records. Add the expression:

Rec.A==<test name in quotation marks>

Rec.A outputs the record where field A matches the test name the
operator selects. For example, if the operator selects test6, the
expression should read Rec.A=="test6". The object extracts the test
record, which can then be displayed.

Create a menu that allows the operator to click a button next to the desired
selection.

3. Select Data ⇒ Selection Control ⇒ Radio Buttons and place
the object to the left of For Count.

a. Open the object menu and select Edit Enum Values.... Highlight
0000: Item 1 and type test0. Press the Tab key to move to
0001: Item2 and enter test1.When you press the Tab key
after the third entry (test2), another entry automatically appears.
Continue to enter values until you reach test9. Click OK and all ten
entries should be displayed, from test0 to test9.

b. Click the Properties selection in the object menu, change the
object name from Radio Buttons to Test Menu, select Auto
Execute under Execution, select Open View ⇒ Show
Terminals, and click OK.
Chapter 5 233

Storing and Retrieving Test Results
Customizing a Simple Test Database
4. The program can now execute whenever the operator makes a menu
selection, so delete the Start object. Press the right mouse button over
the Start object and select Cut.

5. The program should only execute when a menu selection is made, so
connect the Test Menu data output pin Enum to the For Count
sequence input pin. The program should look like Figure 5-17.

Figure 5-17. Adding the Test Menu object
234 Chapter 5

Storing and Retrieving Test Results
Customizing a Simple Test Database
6. The output of the Test Menu goes into a Formula object, which then
sends the correct formula to the From Data Set object.

Select Device ⇒ Formula, and place the object below Test Menu.
(You may want to rearrange and/or resize objects as you add items during
the exercise.) In the new Formula object, enter the following expression:

"Rec.A==" + "\"" + A + "\""

For example, if test6 is selected, then the final formula will read
Rec.A=="test6". The From Data Set object then outputs the first
record it finds, whose "A" field is equal to "test6".

7. Connect the Test Menu Enum data output pin to the data input pin on
the Formula object. Iconize the Formula object.

8. Connect the Formula data output pin to the control input pin on the
From Data Set object labeled Formula.

9. To ensure that the old data from Formula is not reused, delete the
sequence line between For Count and From Data Set. Connect the
For Count sequence output pin to the Formula sequence input pin.

“Rec.A==” "Rec.A==" sends a Text data type to the From
Data Formula expression input. (The quotation
marks indicate a text string.)

A VEE looks at the first field A of all records in the
DataSet file, and selects the first record that equals
the selected test name.

“\”” The escape character for a quotation mark is \”. The
escape character is then put into quotes to indicate a
text string.

The test name comes from the Test Menu as an
Enum data type. Quotes are required to put the
correct formula into the From DataSet object.
Chapter 5 235

Storing and Retrieving Test Results
Customizing a Simple Test Database
10.Connect the Formula sequence output pin to the From Data Set
sequence input pin. This ensures the right data from Formula is being
used.

11.Create a box displaying instructions for the operator. Select Display ⇒
Note Pad. Change the title to Test Results Database
Instructions. Click on the Note Pad input area and type: Select
the test results you want from the Test Menu.

12.Rename the Record Constant object Test Results.

13.The program should look like Figure 5-18. Run the program a few times
to verify that it works. Since the Test Menu object has AutoExecute
turned on, make a menu selection to run the program.

Figure 5-18. Adding a Menu to the Search Operation

Next, create the operator interface.
236 Chapter 5

Storing and Retrieving Test Results
Customizing a Simple Test Database
14.Press Ctrl and click these objects: Test Menu, Test Results
Database Instructions, and Test Results.

All objects selected show a shadow. Verify no other objects are selected.

Then select Edit ⇒ Add to Panel, and the operator interface
appears as a panel view. You can then move and size the objects. One
layout is shown in Figure 5-19.

Note If the Add to Panel selection is grayed out, it means that you do not have
any objects selected in the work area.

Figure 5-19. The Operator Interface for the Database

15.Run the program a few times by making selections in Test Menu. Save
the program as database.vee.

Notice that you can get more detailed information on any given record by
clicking the field names or the values in the Record Constant object
(named Test Results).
Chapter 5 237

Storing and Retrieving Test Results
Customizing a Simple Test Database
Performing a Sort Operation on a Record Field

This exercise uses the dataset2.vee program from a previous exercise.
The dataset2.vee program sets a condition in the From DataSet object
such as Rec.B>=0.5, and VEE extracts all the records that meet the
requirement. The array of resulting records is displayed in the Record
Constant object.

In this exercise, dataset2.vee is modified to sort the resulting records to
determine which tests are failing by the greatest margin. The tests are sorted
by the second field in descending order.

1. Open the dataset2.vee program.

2. Select Device ⇒ Formula and connect the From Data Set data
output pin Rec to the Formula object data input pin. Double-click the
Formula expression field to highlight the default formula, then enter
sort(a, 1, “B”).

The Sort object is located in the Function & Object Browser,
Array Category functions. You can read detailed information on its
capabilities in the object menu Help entry. The sort () function is
called from the Formula object.

The first parameter sorts the data on the Formula object A pin, which is
in an array of records. The second parameter indicates the direction of the
sort: any non-zero number indicates an ascending direction, a zero
indicates descending. The default direction is ascending. The third
parameter, in the case of a Record data type, indicates the name of the
field to sort. Therefore, this performs an ascending sort on the B field in
the array of records.

3. Select Display ⇒ AlphaNumeric and connect it to the data output
pin of the Formula object.

4. Run the program a few times. It should look similar to Figure 5-20.
Notice that the program sorts all of the records returned from the
DataSet file in ascending order by field B.
238 Chapter 5

Storing and Retrieving Test Results
Customizing a Simple Test Database
Figure 5-20. A Sort Operation on a Record Field
Chapter 5 239

Storing and Retrieving Test Results
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review topics, if
necessary, before proceeding to the next chapter.

� Explain the basic notation for using arrays.

� Create an array using the Collector object.

� Extract elements from an array using the Formula object.

� Send a string, time stamp, and real array to a file.

� Retrieve a string, time stamp, and real array from a file.

� Use the function now() for a time stamp.

� Format time stamps in a variety of ways for display.

� Build and unbuild a record.

� Get and set fields in a record.

� Store a record to a DataSet.

� Retrieve a record from a DataSet.

� Perform a search operation on a DataSet.

� Perform a sort operation on a Record field.

� Combine VEE tools to create a simple test database.
240 Chapter 5

6

Creating Reports Easily Using ActiveX

Creating Reports Easily Using ActiveX
Creating Reports Easily Using ActiveX

In this chapter you will learn about:

� ActiveX Automation in VEE

� Using ActiveX for reports with MS Excel

� Using ActiveX for reports with MS Word

Average time to complete: 1.5 hours
242 Chapter 6

Creating Reports Easily Using ActiveX
Overview
Overview
In this chapter, you will learn how to generate reports in other applications,
such as MS Excel, by sending data from the VEE program to the MS Excel
program. VEE uses ActiveX Automation to control other applications,
which provides a fast process for creating detailed and effective reports.

The first lab exercise describes how to send data to an MS Excel spreadsheet
automatically using ActiveX Automation. The second exercise describes
generic template for generating reports, and how to expand on the
functionality of the basic template. The final exercise uses ActiveX in VEE
to send a screen dump and test data to an MS Word document. (The
principles are the same for other spreadsheet and word processing programs
that support ActiveX Automation.)

Note ActiveX replaces the use of DDE in VEE. However, DDE is still supported
in VEE. To use DDE in legacy applications, refer to the second edition of
Visual Programming with HP VEE.
Chapter 6 243

Creating Reports Easily Using ActiveX
ActiveX Automation in Agilent VEE
ActiveX Automation in Agilent VEE
In this chapter, the term ActiveX Automation refers to VEE’s ability to act as
an Automation Controller of Automation Server applications such as MS
Excel, MS Word, and MS Access. The exercises focus on the practical
application of Microsoft’s ActiveX technology to generate test and
measurement program reports.

Note There are also other related lab exercises in this manual: “Using an ActiveX
Control” on page 318. For more detailed information about Automation
terminology and concepts, refer to the VEE OneLab Advanced Techniques
manual.

Listing ActiveX Automation Type Libraries

To find the automation objects installed on your computer, click Devices
⇒ ActiveX Automation References.

Note For information about ActiveX Control References, refer to Chapter 8,
“Using Operator Interfaces.”

Devices ⇒ ActiveX Automation References lists the Type
Libraries that are installed on your PC. Each application and ActiveX
Component that can be an Automation Server registers a Type Library. VEE
displays what is available on your PC. These libraries include information
about the functionality of the application or component that is exposed to
ActiveX clients.

Type libraries typically consist of a set of classes. Some classes can be
created by the programmer. Other classes are always created by the
application or component. Classes consist of properties, methods, and
events, although not all have to be present. The Type Library provides both
the programmer and the VEE environment with information necessary to
utilize the application or component using ActiveX interfaces.
244 Chapter 6

Creating Reports Easily Using ActiveX
ActiveX Automation in Agilent VEE
When you put a check next to a Type Library in the ActiveX Automation
References box, the library objects become available for use in a VEE
program. For example, in Figure 6-1, Microsoft Excel 9.0 is checked.

Figure 6-1. The ActiveX Automation Reference Box

Creating and Using ActiveX Programs with Agilent
VEE

VEE includes a data type called Object for ActiveX programs. A VEE
object with the data type specified as Object is a pointer to something or
some data held by the Automation Server. For example, an Object could
point to a worksheet inside MS Excel, or to a cell inside that worksheet.
(Technically, an Object is a pointer to an IDispatch interface returned by
MS Excel or the Server.)

For example, if you select Data ⇒ Variable ⇒ Declare Variable,
set the Name to App, and set the data type as Object, you can use the
variable App to point to an ActiveX Automation object such as the Excel
Automation Server. Figure 6-2 shows an example of a data type Object.
Chapter 6 245

Creating Reports Easily Using ActiveX
ActiveX Automation in Agilent VEE
Figure 6-2. Example of Data Type “Object”

Performing Operations Using ActiveX Statements

To communicate with an ActiveX Automation server, such as the Excel
Automation Server, enter ActiveX commands in a VEE Formula object.
For example, Figure 6-3 shows a VEE Formula object that has been named
Set Up Excel Worksheet. It contains a list of commands to set up an
Excel worksheet to display the results of a test.

Figure 6-3. Commands to Set Up Excel Worksheet to Display Test
Results
246 Chapter 6

Creating Reports Easily Using ActiveX
ActiveX Automation in Agilent VEE
VEE uses standard Microsoft Visual Basic syntax to create the commands or
statements like those shown in Figure 6-3. The commands or statements
perform three types of operations: get properties, set properties, or call
methods.

� Get property statements usually refer to getting some type of data. The
syntax is <object>.<property>. For example, sheet.application
gets the application property of the sheet object.

� Set property statements usually refer to setting some type of data equal to
something. The syntax is <object>.<property> = <property type>. For
example, object.property = MaxSize sets a property.

� Call methods call a method. A method requests the object to perform an
action. Methods have parameters that allow data to be passed in and
returned. The syntax is <object>.<method>(parameters).

Note The syntax for data type Objects looks similar to the VEE syntax for
getting a Record field, rec.field, and calling a UserFunction,
myLib.func(), so it is important to assign descriptive names to variables.

Using CreateObject and GetObject

Notice that one of the statements in Set Up Excel Worksheet in Figure
6-3 contains the CreateObject() function call. CreateObject() and
GetObject() are functions in the VEE Function & Object Browser,
and they are designed specifically to return a pointer to an ActiveX object in
VEE.

For example, CreateObject("Excel.Sheet")starts up Excel and
returns a reference to a workbook in it. (The Microsoft statement “sheet”
returns a workbook.) Use GetObject() to get something or some data that
already exists in a running Excel, or to load a file into a running Excel.

CreateObject and GetObject are located under Device ⇒ Function
& Object Browser, Type: Built-in Functions, Category:
ActiveX Automation. Figure 6-4 shows an example CreateObject and
GetObject.
Chapter 6 247

Creating Reports Easily Using ActiveX
ActiveX Automation in Agilent VEE
Figure 6-4. CreateObject and GetObject
248 Chapter 6

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
Sending Agilent VEE Data to MS Excel
This section introduces the VEE objects and MS Excel function calls for
generating reports.

Lab 6-1: Sending Agilent VEE Data to MS Excel

In this lab, you will generate virtual test data for MS Excel. (The example
uses MS Office 2000 and the MS Excel 9.0 Object Library, and should also
work with MS Office 97 and the MS Excel 8.0 Object Library.) After
referencing the right Automation Type Library, you will declare some global
variables of the Object type and put them in a UserFunction called
globals. The global variables simplify the program and make it easier to
understand.

Note The VEE programs for many of the lab exercises and programming
examples in this manual are included in VEE, under Help ⇒ Open
Example... ⇒ Manual ⇒ UsersGuide.

1. Reference the Automation Library. Click Device ⇒ ActiveX
Automation References..., select Microsoft Excel 9.0
Object Library, and click OK.

2. Create a UserFunction to store the global variables. Click Device ⇒
UserFunction. Rename it globals. (For more information about
UserFunctions, refer to Chapter 7, “Using Agilent VEE Functions,”
on page 271.)

3. Click Data ⇒ Variable ⇒ Declare Variable and place it to the
left inside globals. Change the Name to sheet. Change the Type to
Object. Other items appear in the dialog box. For this exercise, you do
not need to specify the Object Type and Class. (The Type and Class
are specified in another example in this chapter.)

4. Clone this object three times, and rename the other objects as follows:
app, range, and window. Size and move the globals UserFunction
below Main. It should look like Figure 6-5.
Chapter 6 249

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
5. After you have compared the entries to Figure 6-5, iconize the four
objects.

Figure 6-5. The Globals UserFunction

Notice that by using the datatype Objects in the globals
UserFunction, you could specify the Object Type and Class.
There are two reasons to specify Object Type and Class: more
specific type checking, and catching events.

More Specific Type Checking: For example, if you specify an Object
app as being of type Excel.Application, then only an Object of
type Excel.Application can be assigned to app. Assigning an
Object of type Excel.worksheet or Word.bookmark will cause an
error.

Catching Events: You could also use a VEE UserFunction to catch
various events that could occur in the application, such as a
right-button-down in the MS Excel worksheet. For any of these types of
events, you can specify a VEE UserFunction to handle the event and
pass information back to MS Excel. Events are useful for ActiveX
Controls, where you need a way for the control to communicate back to
250 Chapter 6

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
VEE. For more information, refer to the VEE OneLab Advanced
Techniques manual.

6. Open the UserFunction globals object menu and click Generate
⇒ Call. This generates a Call globals object configured correctly.
Place it to the left in the Main window and iconize the globals
UserFunction window.

7. Click Device ⇒ Formula and place it in the upper center of the Main
window. Rename it Set up Excel Worksheet. Connect the
globals sequence out pin to the Formula sequence in pin. Delete the
input terminal A from Set Up Excel Worksheet (open the Object
menu and select Delete Terminal ⇒ Input.)

8. Inside Set up Excel Worksheet, enter the lines shown in Figure 6-6.
Notice that semicolons are used for line separators, just as in ANSI C.

Figure 6-6. Setting Up the MS Excel Worksheet
Chapter 6 251

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
The commands in the Formula object Set Up Excel Worksheet are as
follows:

set sheet = The keyword set is used to assign or set whatever
is on the right-hand side of the assignment operator
(in this case, the equal sign) to the variable on the
left-hand side of the expression. For example, set
app sets the application sheet.application,
which has been defined as an Excel worksheet.

CreateObject
(“Excel.Sheet”).

Creates a new instance of the Automation Server
(in this case, MS Excel) and creates an empty sheet
(Excel terminology for a new workbook). Each
Automation Server has its own terminology, but the
syntax is the same. For example, to create a report
in MS Word, you would enter
CreateObject(“Word.Document”) to run
Word and create a blank document.

If the set keyword is used, the right-hand side
object pointer itself is assigned to the left-hand side
variable. If set is not used, then the default
property (often the name) of the right-hand side is
assigned to the left-hand side. For more
information, refer to the VEE OneLab Advanced
Techniques manual.

worksheets(1); Now that Excel is running with a new workbook in
it, with CreateObject("Excel.Sheet"), you
want to address the first worksheet in it. Add
worksheets(1) to the statement, so the entire
statement reads:

setsheet =
CreateObject("Excel.Sheet").worksheets(1);

This sets sheet to Sheet 1 of the report. (To see
an example, open MS Excel and select File ⇒
New to create a new workbook. You will notice
there are several sheets in it labeled Sheet1,
Sheet2, and so on. You want Sheet1.)
252 Chapter 6

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
Note For more information about the Application Server libraries, refer to the
many books available about ActiveX Automation and MS Visual Basic. You
can probably find information on the World Wide Web about ordering books
such as Office 2000 or the Office 97 Visual Basic Programmer’s Guide. The
books will help you with VEE as well, since VEE syntax is very similar to
MS Visual Basic.

9. Create a Formula object (under Device ⇒ Formula). Clone the
Formula object to create a second Formula object. Create a For
Range object (under Flow ⇒ Repeat ⇒ For Range). Rename the
objects, connect them, and configure them as shown in Figure 6-7. (Be
sure to delete the input terminal on the Formula object Fill in
Title.)

set app =
sheet.application;

Asks Excel for a pointer to the entire application,
and not just the worksheet itself, by asking the
worksheet for its property Application and
setting it to the variable app.

app.visible = true; Sets the app’s visible property to true in order to
display Excel on screen (so that you can see it).

set window =
app.windows(1);

References the first window.

window.caption =
“Test System
Results”;

Sets the first window’s caption to “Test System
Results.”
Chapter 6 253

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
Figure 6-7. Adding the Title and Data to the Sheet

The instructions in the Formula objects and the For Range object are
described as follows:

sheet.cells(1,1) =
“DC Volts”

Refers to the first row and column in the Excel
worksheet. The text DC Volts will be placed there.
This sets the default property (which is value) of cell
(1,1), to "DC Volts".

sheet.cells(A+1,1)
= random(1,100)

This statement is shorthand for
sheet.cells(A+1,1).value=random(1,100).
The worksheet cell at row A+1, col 1 gets the row
number by adding 1 to the input pin A value but stays
in column 1. The value between 1 and 100 returned
by random is assigned to the specified cell in the
worksheet.
254 Chapter 6

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
10.Create a Formula object and an AlphaNumeric object, rename,
configure, and connect them as shown in Figure 6-8.

Figure 6-8. The Results Average Program

from 1 thru 20,
step 1 (the
For Range object)

As the For Range object outputs the integers from
1 to 20, Fill in Cells puts the random number in
the specified cell.
Chapter 6 255

Creating Reports Easily Using ActiveX
Sending Agilent VEE Data to MS Excel
The entries in the Formula object are as follows:

11.Save the program as results_average.vee. Run the program. MS
Excel will launch with a worksheet like the one shown in Figure 6-9.

Figure 6-9. Excel Worksheet for “Results Average” Program

set range =
sheet.range(“A2:A21");

Sets the VEE variable range to
reference the range A2 to A21 on
the Excel worksheet. (A refers to the
first column in a worksheet.)

range.NumberFormat =
“##,#00.00";

Assigns the format to each of those
cells with the pound signs (#)
allowing for larger numbers, if
necessary.

app.worksheetFunction.average
(range);

Calls an Excel method average()
that returns the average value of the
designated range of values, which
is displayed in Results Average.
256 Chapter 6

Creating Reports Easily Using ActiveX
Creating an Agilent VEE to MS Excel Template
Creating an Agilent VEE to MS Excel
Template
In this exercise, you will create a program to display an array of VEE test
data in MS Excel. You can use this program as a template for displaying the
results of other tests in MS Excel spreadsheets.

Lab 6-2: Creating an Agilent VEE to MS Excel
Template

1. Open results_average.vee.

2. Change the For Range object to loop 10 times.

3. Add the input B to Fill in Cells and change the statement inside to
read: sheet.cells(A+1,1) = B[A-1].

Click Device ⇒ Formula, rename it to Array of Test Data, and
enter the embedded functions randomize(ramp(20), 4.5, 5.5) to
create a random array of 20 elements with values from 4.5 to 5.5.
Delete the input pin and connect the data output pin to the B input of
Fill in Cells.

4. Change the range in the Formula box on the bottom of the screen from
A21 to A11. The statement should now read:
set range = sheet.range(“A2:A11");

5. Save the program as report_template.vee and run it. Compare it to
the Excel worksheet as shown in Figure 6-10 and the complete program
as shown in Figure 6-11.
Chapter 6 257

Creating Reports Easily Using ActiveX
Creating an Agilent VEE to MS Excel Template
Figure 6-10. Excel Worksheet for Array of Test Data

Figure 6-11. Program for Array of Test Data
258 Chapter 6

Creating Reports Easily Using ActiveX
Creating an Agilent VEE to MS Excel Template
You can re-use this program as a template for displaying test results in MS
Excel. You simply put the test data into arrays and modify the rest of the
template to fill in the appropriate cells in the right format.

To find additional methods and properties in the MS Excel library, look at
the Function & Object Browser and choose the ActiveX Objects
under Type and Excel under Library. You can choose a Class or
Member and press Help to get Help provided by the Automation Server
author (in this case, Microsoft). For more complete information on these
libraries, consult Microsoft documentation.

On Your Own

Generate a waveform and strip out the Time Span to get an array. Create a
VEE object for MS Excel with a worksheet and set it to an Object variable.
Make the application visible. Then put the 256 point array into the
worksheet range "A1:A256" in one step, instead of one cell at a time.

HINTS: Use an Unbuild Waveform object. Use the [a] build array
syntax to create a 2D array from a 1D array. Then call the function
transpose() to make it a 256 x 1 array instead of a 1 x 256 array for Excel
to accept it in one step, as shown in Figure 6-12.

Figure 6-12. Program for On Your Own Exercise
Chapter 6 259

Creating Reports Easily Using ActiveX
Creating an Agilent VEE to MS Excel Template
Extending Capabilities With MS Excel

Figure 6-13 shows a more elaborate example of a program to display test
results in MS Excel. You can see how knowledge of a few more calls in the
MS Excel library can expand the template for displaying VEE data in MS
Excel.

Figure 6-13. A VEE to MS Excel Program Example

The entries in Figure 6-13 are as follows:

MS Excel
Window Size

Notice the Drop-Down List in the upper right
work area. This allows you to choose one of three
options xlMaximized, xlMinimized,
xlNormal to select the size of the worksheet
window inside Excel when it comes up. Each
window size is associated with a number, which
VEE calculates and puts in the wndState
variable. This value is then assigned to the
windowState property in the Excel library.
260 Chapter 6

Creating Reports Easily Using ActiveX
Creating an Agilent VEE to MS Excel Template
Memory Tracking (Click Show Terminals in the Properties
boxes on the Formula and Meter objects.) Notice
the memoryTotal and memoryUsed properties in
the Excel library that are assigned to the VEE
variables memTotal and memUsed. These values
are then used to calculate the ranges to configure a
VEE meter before it displays the memory being
used by MS Excel.

Number Format Notice how easy it is to add a dollar sign to the
number format.

sheet.SaveAs
(filename)

The SaveAs() method is being called from the
Excel library to automatically save the worksheet.
Notice that a File Name Selection box (from
the Data ⇒ Dialog Box menu) is used to
display the pop-up Save As box from VEE. The
file name you select is then used as a parameter in
the Excel SaveAs() method call.

Press to Kill Excel The Confirm (OK) button has been used to signal
when you want to close Excel.

Close Excel The quit() method is called to tell MS Excel to
exit.
Chapter 6 261

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
Using MS Word for Agilent VEE Reports
This lab describes how to display VEE test information in an MS Word
document, including text, a time stamp, and a screen dump of a VEE pop-up
panel with an XY Display. Consult Microsoft documentation to find out
more elaborate ways of controlling MS Word from other applications using
ActiveX Automation.

Lab 6-3: Using MS Word for Agilent VEE Reports

To begin, follow the steps to declare five variables as type Object.

1. Click Device ⇒ ActiveX Automation References... and
select Microsoft Word 9.0 Object Library.

2. Click Data ⇒ Variable ⇒ Declare Variable.

a. Change the Type field to Object. Clone it four times.

b. Name the five object variables App, Doc, Wnd, Sel, and Bmp.

c. Select Specify Object Type on all of them. The advantages of
declaring the particular Class within a Library are as follows: VEE
can do type checking for program errors, and you can catch events
from the Automation Server.

d. Then click the Edit... button and select Word for Library in
each case. Select the following Classes:

App will use Application
Sel will use Selection
Wnd will use Window
Doc will use Document
Bmp will use Shape

e. Select Enable Events where the class permits it. Iconize these five
icons. See Figure 6-14 for the open view of these variables.
262 Chapter 6

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
Figure 6-14. Object Variables

3. Create a UserFunction called Graph, which uses a Function
Generator virtual source to send a sine wave to a Waveform (Time)
display. Create a panel view of the display only. Then generate a Call
Graph object in the Main window. (Recall that the UserFunction
object menu includes an easy way to generate a call.)

Now create a bitmap file of the Panel with the Waveform display to use in
the report in MS Word.

4. To create a file name for the bitmap, click Device ⇒ Formula.
Rename it Image Filename. Enter installDir() +
Chapter 6 263

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
"\\panel.bmp" in the Formula input field. (Use the escape sequence
\\ to specify the ASCII character \.) Delete input terminal A.

If you installed in c:\Program Files\Agilent\ for example, you
would then generate the following text string on the Result output pin:
C:\Program Files\Agilent\VEE OneLab 6.0\panel.bmp.

5. Create another Formula object and enter
savePanelImage("Graph", FileName, 256). Rename the input
terminal to FileName.

This saves the screen dump from the UserFunction Graph in the
panel.bmp file in the installation directory at a color depth per pixel of
256.

6. Create another Formula object and enter the statement:
Set App = CreateObject("Word.Application")
This launches MS Word and assigns the object variable app to refer to
this instance of the application. Delete input terminal A. Connect Call
Graph, ImageFileName, and savePanelImage as shown in Figure
6-15.

Figure 6-15. Beginning of Lab 6-3 Program
264 Chapter 6

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
7. Click Device ⇒ Formula and enter the statements shown in Figure
6-16, which are also described below. Rename input terminal A to
FileName. Connect the data input and sequence input pins as shown in
Figure 6-16.

Figure 6-16. Adding the ActiveX Statements

In Figure 6-16, notice that you can nest property and method calls together
with the Object’s dot notation. Refer to ActiveX documentation to find the
right properties in the target applications. You can use the properties and
methods described in this chapter to begin generating test and measurement
reports. The entries in the Formula object are as follows:

App.Visible = 1; Makes MS Word visible on the screen.
Chapter 6 265

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
8. Add three more Formula objects and one If/Then/Else object,
configure, and connect them as shown in Figure 6-17.

Set Doc =
App.Documents.
Add();

Adds a Document in MS Word and assigns it
to the Object variable Doc.
Note: In the Excel example, Excel was started
with a blank worksheet using
CreateObject(Excel.Sheet). In this
example, Word is started and the method
Add() adds an empty Document to it. Either
application can be created either way.

Doc.Activate(); Activates the Document above.

Set Wnd = App.Active
Window;

Takes the document in the active window and
assigns it to the Object variable Wnd.

Set Sel = App.Selection; Puts focus (selection) into the document and
assigns this to the Object variable Sel. This
allows you to insert text.

Wnd.View.Type = 3; Specifies the type of window for displaying
the document. The 3 indicates a normal
window size. A 1 would iconize the window.

Note: The 3 is used here instead of the constant
wdPageView because the constant is missing
from the Office 2000 Type Library.

Sel.TypeText(*** Test
Results ***),
Sel.TypeParagraph();

Puts the title *** Test Results *** in the
document and issue a carriage return/line feed.

Set Bmp = Doc.Shapes.
AddPicture(FileName);

Puts the panel.bmp bitmap into the document
and assigns this call in the Shapes Class to
the Object variable Bmp.

Sel.TypeParagraph();
Sel.InsertDateTime
(M/d/yy h:mm:ss
am/pm, 0);

Puts a time stamp in the document.
266 Chapter 6

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
Figure 6-17. The Complete Program for Report in MS Word

The entries in the additional objects are as follows:

9. Run the program. It should look like Figure 6-18. (If the colors look
strange in the screen dump, iconize any open applications, so the PC has
a full palette of colors to work with.)

App.ActivePrinter Requests the default printer in a string including
its port.

strLen(str) != 0 Makes sure that ActivePrinter has located a
configured printer (if the string on the input is not
null, then...), then outputs a 1 (=TRUE) on the
Then pin, which pings the Formula object
containing the PrintOut call.

DocPrintOut(0) Prints the document.

App.Quit(0) Closes the MS Word application.
Chapter 6 267

Creating Reports Easily Using ActiveX
Using MS Word for Agilent VEE Reports
Figure 6-18. The MS Word Document Created by Lab 6-3

For more information about controlling MS Excel and MS Word using
ActiveX Automation, refer to Microsoft documentation. Remember that you
can also control other Server applications that support ActiveX Automation,
sometimes just called Automation, or OLE Automation.

For more information about using ActiveX controls, refer to Chapter 7,
“Using Agilent VEE Functions,” on page 271.
268 Chapter 6

Creating Reports Easily Using ActiveX
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review topics, if
necessary, before going on to the next chapter.

� Describe the basic concept behind ActiveX Automation in VEE.

� Send data from VEE to MS Excel.

� Use a generic template to send arrays of test data to an MS Excel
worksheet. (Make sure you know how to send an array to the spreadsheet
in one step.)

� Employ some of the extended capabilities of the MS Excel library, such
as finding out the memory used by a program.

� Send text, a time stamp, and a display bitmap to MS Word from VEE.
Chapter 6 269

Creating Reports Easily Using ActiveX
Chapter Checklist
270 Chapter 6

7

Using Agilent VEE Functions

Using Agilent VEE Functions
Using Agilent VEE Functions

In this chapter you will learn about:

� Defining a user function

� Creating, calling, and editing functions

Average Time to Complete: 1 hour
272 Chapter 7

Using Agilent VEE Functions
Overview
Overview
In this chapter, you will learn about VEE UserFunctions and compiled
functions. Functions are re-usable, modular code that can help you
significantly reduce the time it takes to develop tests. By re-using functions
that have been created in previous programs, you can leverage existing
work, reduce the code size of programs, and make it easier to maintain test
programs.
Chapter 7 273

Using Agilent VEE Functions
Using Functions
Using Functions
Like many programming languages, VEE uses functions to create
subprograms that perform specific tasks. The lab exercises in this chapter
describe how to create, call, and edit VEE user-defined functions.

Defining an Agilent VEE Function

There are two types of user-defined functions in VEE. The overview of each
type of function is as follows:

1. UserFunctions

� To create a UserFunction, you select Device ⇒
UserFunction, or click Edit ⇒ Create UserFunction with
several objects selected.

� To call a UserFunction from different places in a program, you use
the Call myFunction (Device ⇒ Call) object or use an expression
within an object (from Formula, for example). You can also generate
call objects in the Main program from the UserFunction, using the
UserFunction object menu and selecting choices such as
Generate ⇒ Call.

� To edit a UserFunction, you click on Edit ⇒ Edit
UserFunction... and select the appropriate UserFunction from
the list box presented.
274 Chapter 7

Using Agilent VEE Functions
Using Functions
2. Compiled Functions

� To create a compiled function, you work outside of VEE using a
compiled language. You then put the functions into a library, such as
a DLL.

� To link a compiled function to a program, you use the Import
Library object, which links the library to VEE at run time. (For a
more detailed discussion, refer to Chapter 9, “Optimizing Agilent
VEE Programs,” on page 323).

� To call a compiled function, you use the Call myFunction object
or write an expression within a VEE object.

The Differences Between UserObjects and
UserFunctions

In previous chapters, you have already created and used UserObjects. The
reason that VEE provides both UserObject and UserFunction is
because the two have different characteristics and can therefore be used for
different purposes. Here are the differences between a UserObject and a
UserFunction:

A UserObject (located in Device ⇒ UserObject) is an object you
define that may be used just like any other object in VEE. You program a
UserObject like a subprogram but it graphically remains on the screen. If
you want to use it elsewhere in a program, you must clone it and maintain all
copies. Note that if you clone a UserObject many times, it makes the
program larger and slower to load. If you add a feature to one UserObject,
you would need to add the same feature to all the other UserObjects if you
want them to remain identical.

With a UserFunction (located in Device ⇒ UserFunction), there is
just one copy of the subroutine in memory, and it is only displayed
graphically in the workspace in its own window if you want it to be.
Otherwise, it is stored to be called from the Call object or any other
expression field. Changes to a UserFunction will be inherited by all
instances in the program that calls that UserFunction.
Chapter 7 275

Using Agilent VEE Functions
Using Functions
Lab 7-1: UserFunction Operations

This exercise describes how to create a UserFunction named
ArrayStats, which will accept an array, calculate its maximum value,
minimum value, mean, and standard deviation, and put the results on its
output pins.

Creating a UserFunction

1. Select Device ⇒ Formula, delete its default input pin, and change its
default expression to ramp(1024,1,1024).

This will create a 1024 element array with values from 1 to 1024.

2. Select Device ⇒ UserFunction. Rename it ArrayStats.

a. Add one data input terminal for the array

b. Add four data output terminals for the results.

c. Rename the output terminals: Max, Min, Mean, and Sdev. Select max,
min, mean, and sdev from the Probability & Statistics
category in the Function & Object Browser box.

d. Place them in ArrayStats, and connect their data inputs to A and
their data outputs to the appropriate output terminals. Make the
ArrayStats window smaller to see both of the Main and
ArrayStats windows. See Figure 7-1.
276 Chapter 7

Using Agilent VEE Functions
Using Functions
Figure 7-1. The Main and ArrayStats Windows

3. Iconize ArrayStats. It appears as an icon at the bottom of the
workspace.

4. Click Device ⇒ Call, open the object menu, and click Select
Function as shown in Figure 7-2. Then click OK. Notice that VEE
renames the object automatically and adds the correct pins.
Chapter 7 277

Using Agilent VEE Functions
Using Functions
Figure 7-2. Configuring the Pins for Call myFunction

5. Connect the output of Formula to the Call ArrayStats input. Select
Display ⇒ AlphaNumeric, clone it three times, and connect the
displays to the Call ArrayStats output pins. Rename the displays.

6. Run the program. It should look like Figure 7-3. Save the program as
array_stats.vee.

Figure 7-3. Calling the User Function ArrayStats

To use ArrayStats elsewhere in the program, you would click on Device
⇒ Call, open the Select Function box from the object menu, and
choose ArrayStats. VEE would automatically rename the object Call
ArrayStats, and add the necessary input and output terminals.
278 Chapter 7

Using Agilent VEE Functions
Using Functions
Shortcut: From the UserFunction object menu, select Generate ⇒
Call to bring up the Call ArrayStats object. (Make sure that the
UserFunction is not expanded to the whole workspace when doing this.)

Editing a UserFunction

In this exercise, edit ArrayStats to deliver a record with four fields giving
the array statistics.

1. Delete the four AlphaNumeric displays.

2. Select Edit ⇒ Edit UserFunction... and select ArrayStats
from the Edit UserFunction list box. All of the UserFunctions in
the program are displayed.

3. Open the ArrayStats object menu, click on size, and enlarge the
editing window. If you need to resize objects, click and drag any corner
of the object.

4. Delete the four lines going to the output terminals. (Press Ctrl-Shift and
click on the line you want to delete.)

5. Select Data ⇒ Build Data ⇒ Record and place it to the right side
of the ArrayStats window.

a. Add two data input terminals.

b. Label the four terminals after the statistical functions: max, min,
mean, and sdev.

c. Connect the four Formula object outputs to the inputs on Build
Record.

d. Rename the Max output terminal X by double-clicking Max, typing
the new name, and clicking OK.

e. Delete the other ArrayStats data output terminals.
Chapter 7 279

Using Agilent VEE Functions
Using Functions
f. Connect the Build Record output to the X output terminal on the
User Function editing window. The program should look like
Figure 7-4. Then click the iconize button on the window.

Figure 7-4. Editing the UserFunction ArrayStats

6. Open the Call ArrayStats object menu and click Configure
Pinout. This will adjust the number of pins to match the recent edits.

Note In order to update the number of pins, you must open the object and click
Configure Pinout whenever you change the number of inputs or outputs
in a UserFunction. Or you can manually update the Call object’s input
and output pins, but using Configure Pinout is much simpler.

Now display a record using the Record Constant object. Use the
Default Value control input to accept a record from ArrayStats. VEE
automatically configures the Record Constant to hold the incoming
record.

7. Select Data ⇒ Constant ⇒ Record and place it to the right of the
Call Function object.
280 Chapter 7

Using Agilent VEE Functions
Using Functions
a. Open the Record object menu and click Add Terminal ⇒
Control Input.... Select Default Value from the list box
presented. You can open the Properties menu to Show
Terminals, if you wish.

b. Now connect the Call Function data output to the control input
pin on the Record object. Notice that control lines are indicated by
dashed lines to differentiate them from data lines.

8. Run the program. It should look like Figure 7-5.

Figure 7-5. After Editing ArrayStats Output to a Record

Calling a UserFunction from an Expression

In this exercise, you will learn how to call ArrayStats from an expression
in the Formula object.

1. Select Device ⇒ Formula and replace the default formula with
ArrayStats(A). Click Replace in the Call ArrayStats object
menu.

The Status Bar at the bottom of the VEE screen prompts you to select the
replacement object. Click on the Formula object that calls the
ArrayStats function. VEE automatically replaces the Call
ArrayStats object with the new Formula object and retains the
wiring of the data lines.
Chapter 7 281

Using Agilent VEE Functions
Using Functions
The Formula object takes the input at terminal A and sends it to the
UserFunction ArrayStats. ArrayStats delivers the record of
statistics to its terminal X. The first output value from the
UserFunction (X) is returned to the Formula object and delivered to
its Result output.

2. Run the program. It should look like Figure 7-6.

Figure 7-6. Calling the ArrayStats User Function

Notice that the functionality of ArrayStats in the Formula object is
exactly the same as it was in the Call ArrayStats object. This
example uses a Formula object, but you could call ArrayStats from
any input field that accepts expressions, such as the To File object.

Note When you call a UserFunction from an expression, the UserFunction
will only deliver a single output (the uppermost data output pin). If you need
all of the outputs, or they cannot be put into a Record, then use the Call
Function object.
282 Chapter 7

Using Agilent VEE Functions
Using Functions
Note When you call a UserFunction from an expression, input terminals are
used as function parameters to pass to the function. If no data is passed to the
function, you must still include empty parentheses after the function name.
Otherwise, VEE assumes you are referring to a Global variable or input
terminal. For example, if the UserFunction called MyFunction has no
input parameters, you must write MyFunction() in an expression. The
Call object does not require the parentheses, because VEE knows you are
referring to a function.

Generating a Call to a UserFunction

To generate and place a call object in the Main program from a
UserFunction, use the UserFunction object menu Generate menu.
The Generate menu contains most of the common objects that call a
UserFunction. When you select a calling object, it can be placed in the
calling window, such as the Main program, properly configured with the
correct name and pins.

In this exercise, you will learn how to generate the ArrayStats object in
the Main program from the ArrayStats UserFunction.

1. In the same example used in Figure 7-6, double-click the Formula object
ArrayStats to delete the object. (You could also select the object menu
and select Cut.)

2. In the UserFunction ArrayStats, select the object menu and select
Generate ⇒ Formula Call. Figure 7-7 shows the Generate menu
in a UserFunction object menu.
Chapter 7 283

Using Agilent VEE Functions
Using Functions
Figure 7-7. The Generate Menu in a UserFunction

3. Place the object in Main. Notice that VEE automatically names the new
object ArrayStats(A) and includes the expression ArrayStats(A) to
call the UserFunction ArrayStats.

4. Connect the output from the Formula object to ArrayStats(A), and
connect the output from ArrayStats(A) to Record.

5. Run the program. It should look like Figure 7-8.

Open a UserFunction object menu and select the Generate menu to
review the other objects that can be placed into a program to call a
UserFunction. They include Call, Formula Call (used in this
example), If/Then/Else Call, ShowPanel, and HidePanel objects.
284 Chapter 7

Using Agilent VEE Functions
Using Functions
Figure 7-8. Generating a Call Object ArrayStats(A) from a UserFunction
Chapter 7 285

Using Agilent VEE Functions
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review topics, if
necessary, before going on to the next chapter.

� Define a UserFunction and compare it to a Compiled Function.

� Create, call, and edit a UserFunction.
286 Chapter 7

8

Using Operator Interfaces

Using Operator Interfaces
Using Operator Interfaces

In this chapter you will learn about:

� Building operator interfaces

� Using menus for an operator

� Importing bitmaps to add clarity

� Operator interface features

� Using ActiveX Controls to extend capabilities of VEE

Average Time To Complete: 2 hours
288 Chapter 8

Using Operator Interfaces
Overview
Overview
In this chapter, you will learn more about operator interfaces, including
adding menus, customizing interfaces, adding warning signals, and
importing bitmaps. This chapter expands on the exercises in previous
chapters, where you created operator interfaces and pop-up panels.

Some benefits of using VEE operator interface features are:

� Maximum ease of use for the operator

� Improved program performance

� Clarity through visual aids
Chapter 8 289

Using Operator Interfaces
Key Points Concerning Operator Interfaces
Key Points Concerning Operator Interfaces
This section is an overview of how to create an operator interface in VEE.

Creating an Operator Interface

VEE includes a wide range of selection controls, pop-up dialog boxes,
indicators, and displays to create operator interfaces. Selection controls
include items such as buttons, switches, check boxes, drop-down menus, and
list boxes. Indicators include items such as tanks, thermometers, fill bars, vu
meters, and color alarms.

In addition to the operator interface elements provided within VEE, you can
add elements from other sources. There are thousands of operator interface
elements that can be downloaded from the World Wide Web. There are
operator interfaces that are available through ActiveX controls. (Some items
that you download may be free and some may charge a fee.)

Whether you use operator interface objects that are all provided in VEE or
add outside elements of your own, the process for creating an operator
interface is the same.

To create an operator interface for a VEE program, you create a Panel view
of the program.

1. Select the object or objects that you want in the panel view, by holding
down the Ctrl key and clicking each object to select it.

2. Select Edit ⇒ Add To Panel. The screen switches to Panel view,
shown by default in blue, that includes the objects you highlighted from
the Detail view.

You now have a view of the VEE program that you can customize to show
only what the operator needs to see.
290 Chapter 8

Using Operator Interfaces
Key Points Concerning Operator Interfaces
Moving Between Panel View and Detail View

To move between the Panel view and the Detail view of a VEE program,
click the panel or detail icon on the title bar of the window as shown in
Figure 8-1.

Note You must create a Panel view of the program to have the panel view button
displayed in a window title bar.

Typically, you develop the program in Detail view and then create a Panel
view for the operator interface. The Panel view button can be on the title bar
of a UserObject window, UserFunction window, or Main window.

.

Figure 8-1. Panel View Button and Detail View Button in Title Bar

Customizing an Operator Interface

In the Panel view of a VEE program, you can change the size of objects,
rearrange objects, and change the way the objects are displayed without
affecting the same objects in the detail view. For example, you could remove
the title bar and the scales from the Panel view of a Waveform (Time)
display without affecting the detail view of the same Waveform (Time)
display. However, if you delete an object in the detail view, it will also be
deleted in the panel view.

Detail View ButtonPanel View Button
Chapter 8 291

Using Operator Interfaces
Key Points Concerning Operator Interfaces
In panel view, you can choose different colors and fonts to add emphasis,
and scalable bitmaps to add clarity. You can also document the panel view
for the operator by editing title bars, using the Note Pad and Label
objects, and using the Description option in the object menus.

Figure 8-2 shows some of the VEE indicators available.

Figure 8-2. A Selection of VEE Indicators
292 Chapter 8

Using Operator Interfaces
Using Operator Interface Objects
Using Operator Interface Objects
This section introduces the operator interface objects and options that are
available in VEE. You can skim through this section to get an idea of the
items you can choose to create operator interfaces for programs, and how
you can customize them. Then do the lab exercises to see how to set up
operator interfaces for some common tasks.

Colors, Fonts, and Indicators

� Colors and Fonts You can configure colors and fonts using the File
⇒ Default Preferences selection or through the Properties
selection in each object menu. The choice of colors and fonts depends on
the operating system and the fonts you have installed.

� Color Alarms Color alarm objects are located in the Display ⇒
Indicator menu. They can be configured for three different ranges
with color and a text message, and as squares or circles. Alarms are often
used to simulate an “LED,” or to warn operators of a situation that
demands their attention.

� Tanks, Thermometers, Fill Bars, Meters These objects are in the
Display ⇒ Indicator submenu. They can be customized with
colors and labels. These indicators can be set to horizontal or vertical
formats, and have three default ranges, which can be configured under
Properties in the object menus.

Graphic Images

You can import bitmaps into the panel view by setting the Background
Picture in the Panel folder of the Properties box. VEE imports
*.jpeg, *.png, *.wmf, *.xwd, *.GIF, *.bmp, and *.icn files to serve as
the background for your Main, UserObject, or UserFunction panel.

When a bitmap is set as the background picture, other VEE objects will
appear on top of the picture. (For more information about how to do this,
refer to “Importing Bitmaps for Panel Backgrounds” on page 311.) Images
Chapter 8 293

Using Operator Interfaces
Using Operator Interface Objects
may be scaled, tiled, cropped, or centered. Figure 8-3 shows a VEE logo
sized and used as a background image.

Figure 8-3. Logo Used as a Background Picture

Figure 8-4 shows a background picture that has been tiled.

Figure 8-4. Background Picture Used as Tile
294 Chapter 8

Using Operator Interfaces
Using Operator Interface Objects
There is also a Picture object in the Display menu, if you want to place a
bitmap in a program. Figure 8-5 shows a picture that has been included with
Display ⇒ Picture, and then cropped in VEE.

Figure 8-5. A Cropped Image in VEE

Note You can also change bitmaps for any icon using the Properties ⇒ Icon
tab.

Displaying a Control for Operator Input

There are various ways to set up a program so that an operator can control it
by entering input. You can get user input from pop-up dialog boxes, any data
constant, sliders, and knobs. To choose a control, look in menus such as
Data ⇒ Selection Control, Data ⇒ Toggle Control, and Data
⇒ Continuous. Figure 8-6 shows a collection of the objects you can use
to clarify programs for the operator.
Chapter 8 295

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-6. Controls from Various Data Submenus

For each of the objects shown in Figure 8-6, you can also customize the
object’s look and feel. For example, see the Real64 Knob Properties
dialog box in Figure 8-7. To configure the object, choose a folder such as
Colors and make selections.

Note With ActiveX you can also use controls and displays from other
applications, as shown in the example “Using an ActiveX Control” on
page 318.
296 Chapter 8

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-7. The Properties Dialog Box

Displaying a Dialog Box for Operator Input

VEE includes built-in pop-up dialog boxes with automatic error checking,
prompts, and error messages. They are located under Data ⇒ Dialog
Box.

For example, a program could require the operator to enter a real number
when the program runs. You can include a Real64 Input object in the
program that automatically displays a Real64 Input box for the operator
when the program runs. The Real64 Input box also automatically
displays an error message if the operator does not enter the correct
information at the prompt. Figure 8-8 shows the object to include in the
program, and the Real64 Input box that appears when the program runs.
Chapter 8 297

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-8. A Text Input Box

Figure 8-9 shows the configurable error message that appears if the program
runs and the operator presses OK without entering correct information into
the Real64 Input box.

Figure 8-9. An Example of Automatic Error Checking

The input boxes for Int32 and Text, which are also located in Data ⇒
Dialog Box, are similar to the Real64 Input. In addition, the Data ⇒
Dialog Box menu includes choices for Message Box, List Box, and
File Name Selection.

Figure 8-10 shows a dialog box that pops up to display a message.

Figure 8-10. A Pop-Up Message Box

Include the object
in the program
and connect it
appropriately

When the program
runs, the input box
appears for the operator
298 Chapter 8

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-11 shows a dialog box that pops up for an operator to enter a list.

Figure 8-11. The List Selection Box

Figure 8-12 shows a dialog box that pops up for an operator to select a file
name.

Figure 8-12. A Pop-Up File Selection Box

Displaying a Toggle Control for the Operator

VEE includes built-in toggle controls that can be used to sent out a 0 or a 1.
To use a toggle control, set the initial state, and execute a subprogram when
the toggle is activated. You can also put custom bitmaps on a Toggle.

For example, if you have a program where the operator needs to set switches
or alarms, you can use toggle controls. Figure 8-13 shows a panel for the
operator to set the switches.
Chapter 8 299

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-13. Switches and Alarms Combined

Aligning Objects in the Operator Interface

In the panel view, there is a “snap-to-grid” feature to help align objects. You
can change the grid size from 10 to 1 (10 is the default) to make very
accurate alignments, as shown in Figure 8-14. You can use this feature to
give the program a professional look. The “snap-to-grid” feature is located
in the Panel folder under the Properties selection of the UserObject or
UserFunction menu. (Remember, you must have created a panel view for
the Panel folder selection to display in the dialog box.)
300 Chapter 8

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-14. Configuring Panel Properties

Creating an Operator Interface for the Keyboard Only

You can also use VEE to create interfaces that the operator can control using
the keyboard only. They do not require a mouse.

For example, you can configure the OK object to act as a softkey. Typically
you configure it so that it is attached to one of the F-keys. The operator can
then press F-keys to control the program, as shown in Figure 8-15.

Figure 8-15. A Softkey Executing a UserFunction

Figure 8-16 shows how to configure an OK object using the
Properties... dialog box to connect to a function key, Enter, or Esc
keys.
Chapter 8 301

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-16. Configuring the Confirm (OK) Object as a Softkey

Furthermore, the program can be controlled with the keyboard in panel view.
VEE automatically highlights a button for the panel with a dotted outline. If
the operator presses Enter, that button will be “pressed.” If the operator is
editing a text input area, pressing the Enter key accepts the edit, and
pressing the Esc aborts the edit. The Tab key moves forward through the
various input object selections and shows the active object. The Shift-Tab
keys move backward. Use the following combinations for controlling
program execution:

Ctrl-G Run or Continue (Resume)

Ctrl-P Pause

Ctrl-T Step
302 Chapter 8

Using Operator Interfaces
Using Operator Interface Objects
Selecting Screen Colors

To select screen colors, use the File ⇒ Default Preferences dialog
box. Set the VEE environment as desired and save the changes. Figure 8-17
and Figure 8-18 show how to change particular screen elements to the
desired color.

Figure 8-17. The Default Preferences Dialog Box
Chapter 8 303

Using Operator Interfaces
Using Operator Interface Objects
Figure 8-18. Color Selection for Screen Elements

Displaying a Pop-Up Panel During Execution

You can cause a panel to pop up when a UserObject or UserFunction
executes in a program. To display a pop-up panel, select Show Panel on
Execute under Properties in the object menu. To keep the panel on
screen until the operator is ready to proceed, add a Confirm (OK) object.
Otherwise, the panel disappears when the UserObject or UserFunction
is done executing.

To keep a pop-up panel displayed during multiple calls to a UserFunction,
use the ShowPanel() and HidePanel() functions. For example, you may
want to keep the pop-up panel displayed as a status panel while the program
executes.
304 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Common Tasks In Creating Operator
Interfaces
In the following exercises, you will learn how to implement many operator
interface features. Specifically, you will learn how create menus, create
warnings, and import bitmaps to add more visual impact to programs. All of
the labs will give you a chance to customize the interfaces.

Lab 8-1: Using Menus

In this exercise, you will create an operator interface that includes a menu
with three choices: die1, die2, and die3. When the operator selects a
choice, a function by the same name will be called that displays a die with
one, two, or three dots on its top face. This program simulates a situation
where the operator must choose a test to run from a menu. You will also
learn how to import a bitmap to change the appearance of an icon. This will
be called the Dice Program.

Begin by creating the three UserFunctions.

1. Select Device ⇒ UserFunction.

Although you could use any icon to display the imported bitmap, this
example uses the Picture object.

2. Select Display ⇒ Picture and place it in the UserFunction.

3. Open the Picture object menu, click Properties, then deselect Show
Title Bar under Open View. Select die1.gif under Picture, click
Scaled, then OK.

Note To access an object menu when Show Title Bar is turned off, click the
right button over the object.

Note Although VEE defaults to the bitmaps subdirectory, you could use a bitmap
from any directory.
Chapter 8 305

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
You should now have a picture of a die with one dot on its top.

4. Select Flow ⇒ Confirm (OK) and place it below the die. Connect the
Picture sequence output pin to the OK sequence input pin.

Select the Picture and the OK objects (press Ctrl and click the objects to
create a shadow). Open the pop-up Edit menu by placing the mouse
pointer on the background and pressing the right mouse button. Select
Add to Panel.

5. Change the UserFunction Title and Panel Title to die1.
Arrange the objects and size them as desired.

Note To move objects in Panel View, right-click on the object and select Move.

Select Show Panel on Execute from the Properties dialog box.
Click the Panel folder and change the grid size to 2 for more accurate
alignment. Then click OK.

6. Create two more UserFunctions by selecting Clone in the die1
object menu. The new UserFunctions appear automatically as die2
and die3. Change the picture objects to die2.gif and die3.gif
respectively. Check all the settings of the new functions to make sure
they match die1 except for the names and bitmaps. The program should
look like Figure 8-19. Iconize the function windows.
306 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Figure 8-19. Early Stage in the Dice Program

Create a menu to select one of these three functions to call.

7. Select Data ⇒ Selection Control ⇒ Radio Buttons.

Radio Buttons is an object that outputs an enumerated value (the
Enum data type: a text string with an ordinal number associated to it)
from a user-defined list on its upper output pin. For example, if you
define the list as Monday, Tuesday, Wednesday, Thursday, and Friday,
the operator could select the day from a menu, and Radio Buttons
would then output the day.

The first item in the list is assigned the ordinal position 0; the nth item in
the list is assigned ordinal position n-1. For instance, Monday in the list
above has an ordinal position of 0, and Friday has an ordinal position of
4. The ordinal position appears on the lower output pin. Read the Help
entry in the object menu for a more detailed explanation.
Chapter 8 307

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
8. Open the Radio Buttons object menu and select Edit Enum
Values....

Type in the names of the functions die1, die2, and die3 by pressing
the Tab key between each entry except the last. Click OK.

Note There are six menu formats for data selection control. Radio Buttons
displays entries as buttons. The operator’s selection is output in text format
as an Enum data type. Cyclic Button cycles through the enumerated
values one at a time as the operator clicks the button. List displays all of the
enumerated values in a list with the selected item highlighted. Drop-down
list, Pop-up list, and Slider list are the other three choices.

9. Open the Radio Buttons object menu, click Properties, then select
Auto Execute. Change the title to the prompt: Make a Selection:

Set up a Call object so that the value the operator selects on the Radio
Buttons object will now become the function name that the Call
Function object calls.

10.Click Device ⇒ Call. Select Add Terminal ⇒ Control Input,
then select Function Name, and click OK. The Function Name control
pin accepts an Enum or Text value as input. Connect the Radio
Buttons data output pin to the Function Name input terminal on the
Call Function object. Connect the Radio Buttons sequence out
pin to the sequence in pin of Call Function. Click on die2 in Make
a Selection: and notice that the Call Function Name changes to
die2, as shown in Figure 8-20.

Figure 8-20. The Dice Program (Detail View)
308 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Note The Call input terminal requires a Text Scalar, so VEE converts the
Enum Scalar to a Text Scalar.

Remember the dotted line indicates a control pin. When Auto Execute
is turned on, Radio Buttons executes whenever you make a change to
it and sends the selection to Call. The control pin on Call Function
replaces the function name as soon as the pin receives data. The Call
object does not call the specified function until its sequence input pin is
fired.

Note When a program uses Auto Execute and the sequence pins, the operator
does not have to click the Run button to begin the program.

Add an operator interface showing only the prompt, the menu, and the
pop-up panels showing the selections.

11.Select the Radio Buttons object by pressing Ctrl and clicking on the
target object. Then select Edit ⇒ Add To Panel.

12.Open the object menu, select Properties, and adjust the colors and
fonts if desired.

13.Run the program by making a selection. (Do not use the Run button,
because it will use the selection that is already made on the menu.)

The program should look like Figure 8-21 when executing.
Chapter 8 309

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Figure 8-21. The Dice Program (Panel View)

There are a few things to note before the next lab exercise:

� You can use the same techniques in the exercise above to create menus
for any program.

� Radio Buttons could also be used to select a compiled language
program by using the Execute Program object with a control pin
(“Command”) that indicated the program to call. If you had imported a
library of compiled functions, you could also use the Call object to run a
function from the library.

� You could optimize this program by using the File Name data input pin
on the Picture object inside a single UserFunction, and then sending
the appropriate bitmap file to the object. If you are using many different
bitmaps, this is a more efficient way to program.

� You will usually use Run instead of AutoExecute on more complicated
programs. You can have the program pause at a data constant or selection
control object by using Wait for Input instead of AutoExecute. See
Help for more information.
310 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Lab 8-2: Importing Bitmaps for Panel Backgrounds

Bitmaps are not essential to your programs, but they can add clarity and
impact to tests. For example, you might want to import a schematic to better
illustrate what is being tested. In this exercise, you will import bitmaps for
panel backgrounds with standard VEE objects placed on top of them.

Bitmaps can be imported for icons, the Picture object, or for the panel
view backgrounds in UserObjects or UserFunctions. You will create a
pop-up UserFunction called Bitmap that includes a Label object and a
Confirm (OK) object.

1. Select Device ⇒ UserFunction.

2. Select Flow ⇒ Confirm (OK) and Display ⇒ Label, and place
them in the UserFunction window.

3. Change the name of the UserFunction to Bitmap.

4. Select the OK and the Label objects to highlight them with a shadow.
Open the pop-up Edit menu by placing the pointer on the UserFunction
work area and clicking on the right mouse button. Select Add to
Panel.

5. Open the UserFunction menu, select Properties, then select Show
Panel on Execute. (Remember to double-click on the title bar to get
the Properties box.) Deselect Show Title Bar under Pop-up
Panel.

Open the Panel folder, change the Grid Size to 2, select
default.gif and Scaled under Background Picture, then click
OK.
Chapter 8 311

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
6. Open the Properties box for the Label object, and set as follows:

7. Position the title Bitmap Function and the OK button as desired.
Iconize the Bitmap UserFunction.

8. Go to the Main window. Click Device ⇒ Call, then click Select
Function in the object menu, and choose Bitmap. Run the program.
The pop-up box should look like Figure 8-22.

General/Title: Change to Bitmap Function.

Label Justification Change to Center Justify.

Colors/Object/
Background

Select Light Gray and click OK.

Fonts/Object/Text: Choose a larger font with bold type, and
click OK. Check Automatically Resize
Object on Font Change.

Appearance/Border Click on Raised. Click OK to make the
changes and close the Properties dialog.
312 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Figure 8-22. The Bitmap Function

Lab 8-3: Creating a High Impact Warning

This exercise includes several UserFunctions that are nested. The first
UserFunction is the alarm itself, which displays a red square and beeps.
The second UserFunction calls the alarm repeatedly creating a blinking
light effect and a pulsing sound, until the operator turns the alarm off.

Begin by programming the alarm function.

1. Select Device ⇒ UserFunction. Change the name to alarm.

2. Select Display ⇒ Beep and place it in the upper-left of the
UserFunction. Adjust the settings so there is a loud beep that lasts a
second. Change the Duration (sec) field to 1. Change the Volume
(0-100) field to 100.
Chapter 8 313

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Note These instructions assume your computer has the hardware to support a
beep. Some Windows 95, Windows 98, Windows 2000, and Windows NT
4.0 systems have modified the Default System configuration for the
Default System Beep.

Note You do not need to connect the Beep object to anything. It activates when
the function executes.

3. Click Display ⇒ Indicator ⇒ Color Alarm and place it in the
UserFunction. Open the Color Alarm object menu, click
Properties, and set as follows: under Open View, deselect Show
Title Bar. Under Layout, click Rectangular. Under
Limits/High Test, delete any text beside High Text. Click OK.

4. Click Data ⇒ Constant ⇒ Real64, change it to 1, and connect it to
the Color Alarm input pin. (This will always set the Alarm to its high
range with the default color of red.)

To keep the display on screen for one second to synchronize with the
Beep object, use a Delay object set to 1 second.

5. Select Flow ⇒ Delay, set it to 1, and connect its sequence input pin to
the Color Alarm sequence out pin. The alarm will then last one second.

6. Select Display ⇒ Note Pad and add the message: TURN OFF
INSTRUMENTS!. Size the Note Pad as needed.

7. Go to the Main window. Click Device ⇒ Call, choose Select
Function from the Call object menu, and select alarm. Run the
program to test it. The detail view of the UserFunction alarm should
look like Figure 8-23.
314 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Figure 8-23. The UserFunction alarm (Detail View)

8. Return to the alarm window. Select the Color Alarm display and the
Note Pad. Open the pop-up Edit menu and select Add To Panel. In
panel view, size and arrange the objects. Open the Note Pad object
menu and click Properties. Set as follows:

Click OK to close the Properties dialog box.

9. Change the Color Alarm to a Raised Border as well.

Open View/
Show Title Bar

Deselect.

Editing/Enabled Deselect.

Fonts/Text size Enlarge text size and Font Style: Bold.

Fonts Select Automatically Resize Object on
Font Change.

Appearance/Border Change to a Raised border.
Chapter 8 315

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
10.Double-click on the UserFunction title bar to get the Properties
dialog box, and select Show Panel on Execute. Deselect Show
Title Bar. Change the Panel Title to alarm. Iconize alarm.

11.Go to the Main window and delete the Call object. (VEE will still hold
the function alarm in memory. If you want to edit the function again,
select Edit ⇒ Edit UserFunction or double-click on its icon.)

Create the function that repeatedly calls the alarm function.

12.Select Device ⇒ UserFunction and change the name of the
UserFunction to warning.

13.Select Flow ⇒ Repeat ⇒ Until Break.

14.Select Device ⇒ Call, change the Function Name to alarm, and
connect its sequence input pin to the Until Break data output pin.

Add a Check Box object to ask the operator if he or she wants to turn off the
alarm.

15.Select Data ⇒ Toggle Control ⇒ Check Box. Open the Check
Box Properties box, change the name to Turn off alarm?, select
Scaled under Layout, select Initialize at PreRun and make
sure the value is 0, make the font size bigger for the name, then click OK.
Connect the Call sequence out pin to the Check Box sequence in pin.

This creates an input object that uses a Check Box. If the operator clicks
the box, an X will appear and the object outputs a 1; otherwise, the object
outputs a 0. The output can be tested with an If/Then/Else object to
tell VEE what to do next.

16.Select Flow ⇒ If/Then/Else and place it to the right of the Toggle.
Connect the Toggle data output to the data input A of the
If/Then/Else object. Edit the expression in the If/Then/Else
object to: a == 1. (Recall that the symbol for “is equal to” is ==,
not =.) If the terminal A holds a 1, the Then output will fire; otherwise,
the Else output fires.

Connect the output of Toggle to the input of If/Then/Else.
316 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
17.Select Flow ⇒ Repeat ⇒ Break and connect it to the Then output on
the If/Then/Else object, as shown in Figure 8-24.

Figure 8-24. The Warning UserFunction (Detail View)

18.Select the Check Box object (Turn off alarm?)by clicking on the
right side of the object. Open the pop-up Edit menu and select Add To
Panel. Size the panel view to surround the Check Box.

19.Open the warning UserFunction Properties box, select Show
Panel on Execute, deselect Show Title (since the title serves no
purpose to the operator). Click OK.

20.Go to Main and click Device ⇒ Call, open its object menu, click
Select Function, then select warning. Move the Call object to the
top center of the screen. Iconize the Main window.

21.By default, VEE displays both the alarm and the warning panels in the
center of the screen, so the alarm will blink on top of the check box that
will stop the alarm. Since both of these screen positions are not locked,
you can reposition them on the screen by clicking and dragging the
pop-up panels to new locations. However, with the alarm panel blinking
Chapter 8 317

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
this is somewhat difficult. Instead, click and drag the edge of the panel. If
needed, stop the program using the stop button on the tool bar. Run the
program.

When you have the two panels positioned as shown in Figure 8-25, you can
stop the program by clicking the box next to the Turn off alarm?
prompt.

Figure 8-25. The Warning Program

Lab 8-4: Using an ActiveX Control

This lab shows how to use an ActiveX Control within VEE. You can
incorporate ActiveX Controls from other applications into VEE programs.
In this case, you will incorporate a ProgressBar control and use a loop to
show the progress bar 0% to 100% complete. The same general principles
apply to other ActiveX Controls.

1. Click Device ⇒ ActiveX Control References... and select
Microsoft Windows Common Controls 6.0. Click OK.
318 Chapter 8

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
2. Click Device ⇒ ActiveX Controls ⇒ ProgressBar. Size the
ProgressBar object to be larger. Open its Object Menu and notice that
the object name is ProgressBar. VEE has automatically created a
declared variable that refers to the ActiveX control object. You can use
the name ProgressBar in Formula expressions, just like any other
variable or data input.

3. Click Device ⇒ Formula & Object Browser, and select ActiveX
Objects, Library: MSComcltLib, Class: ProgressBar,
Members: Value, and click Create Set Formula. Place the object
at top center in the Main window.

4. To loop from zero to one hundred and show the percent complete, you
will add a For Range object. Select Flow ⇒ Repeat ⇒ For Range,
place the object below the ProgressBar, and set it as follows: From:
0, Thru: 100, and Step:10. Connect the For Range output to the
ProgressBar input terminal Value.

5. To slow down program execution so that you can see the ProgressBar
updating, select Flow ⇒ Delay and place the object to the right of the
For Range object. Set it to .2. Connect the ProgressBar sequence
output pin to the Delay object sequence input pin, as shown in Figure
8-26, and run the program.

Figure 8-26. Using the ActiveX Control “ProgressBar”
Chapter 8 319

Using Operator Interfaces
Common Tasks In Creating Operator Interfaces
Note ActiveX Control object menus have both Properties and Control
Properties. The Properties menu sets the VEE properties of the
object. The Control Properties are supplied by the Control and can be
different for each type of ActiveX Control.

Examine all the control examples that ship with VEE to get a better
understanding of how they work. Then look for other controls and displays
in the marketplace you might want to add to enhance the user interface
capabilities in VEE.

Figure 8-27 shows another example of VEE incorporating a control from
MS Chart. After you have selected a control library in the Device ⇒
ActiveX Controls References dialog box, you can use the Function
& Object Browser or the Declare Variable Object to identify a
control’s properties and methods.

Figure 8-27. An ActiveX Control Example Using MSChart
320 Chapter 8

Using Operator Interfaces
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review, if
necessary, before going on to the next chapter.

� Summarize the key points concerning operator interfaces.

� Use a menu to select tests on an operator interface.

� Import a bitmap for an operator interface.

� List some of the operator interface features that VEE provides.

� Create a high impact warning.

� Create an ActiveX Control and find its properties and methods in the
Function & Object Browser.
Chapter 8 321

Using Operator Interfaces
Chapter Checklist
322 Chapter 8

9

Optimizing Agilent VEE Programs

Optimizing Agilent VEE Programs
Optimizing Agilent VEE Programs

In this chapter you will learn about:

� Basic techniques for optimizing programs

� Using Dynamic Link Libraries (DLLs) on a PC

� Optimizing with compiled functions

� Using the VEE Compiler

Average Time To Complete: 2 hours
324 Chapter 9

Optimizing Agilent VEE Programs
Overview
Overview
In this chapter, you will learn how to improve the execution speed of VEE
programs. There are three basic components in test program performance:
the speed of taking the measurement, the rate at which the data is transferred
to the computer, and the speed at which the program processes the data. By
optimizing the VEE program, you can increase its processing speed.

In the first section, you will learn the basic principles for optimizing a VEE
program. You will also learn about Dynamic Link Libraries (DLLs) on the
PC. The next section describes how to optimize using compiled functions.
Then, there is an overview of the VEE compiler.

Note The techniques in this chapter apply whether or not you use the compiler.
Chapter 9 325

Optimizing Agilent VEE Programs
Basic Techniques for Optimizing Programs
Basic Techniques for Optimizing Programs
To optimize VEE programs, read the information in this section. You can
use the techniques described here to develop good programming habits in
VEE.

Perform Math on Arrays Whenever Possible

Performing mathematical operations on arrays greatly improves program
performance. For example, suppose a test must find the square root of
measurements being taken. The traditional way to program this would be to
take a measurement and calculate the square root in a loop. Instead, in VEE,
you can store all the measurements in an array and calculate the square root
of the array in one step.

In Figure 9-1, the program iterates 1024 times. Each iteration calculates a
square root.

Figure 9-1. Calculating Square Roots per Measurement

In Figure 9-2, the program creates an array of 1024 elements and calculates
the square root of the array (yielding an array of square roots). Although the
two programs both yield the same results, the program in Figure 9-2
executes about 6 times faster than the one in Figure 9-1. (This example uses
a 300 MHz HP Pavilion PC.)
326 Chapter 9

Optimizing Agilent VEE Programs
Basic Techniques for Optimizing Programs
Figure 9-2. Calculating Square Roots using Math Array

The difference in the execution speeds of the two programs is due to the time
required for an object to execute. There is a fixed amount of overhead when
an object executes. Therefore, when you reduce the number of times an
object executes by using arrays rather than scalar values, the program runs
faster.

Using the Do object is a good idea when timing to make sure the timer
triggers first in both programs. The ramp function generates an array with
1024 elements starting at 0 and ending at 1023.

Note To ensure faster execution, always make sure you are using the most recent
execution mode in VEE. To do this, click File ⇒ Default
Preferences (or use the button on the tool bar). Select VEE6 under
Execution Mode and click Save. In the status bar at the bottom of the
VEE window, you should see VEE6 listed.

Make Objects into Icons Whenever Possible

The more information VEE has to maintain on the screen, the more time it
will take the program to run. To optimize the program, use iconic views for
objects that update their contents, such as the Counter, instead of using
open views. The example in Figure 9-3 operates about 46 times faster using
an iconic view for the For Count and Counter object.
Chapter 9 327

Optimizing Agilent VEE Programs
Basic Techniques for Optimizing Programs
Figure 9-3. Optimizing Programs by Using Icons

Reduce the Number of Objects in Programs

As you become more experienced, you will tend to use less objects in VEE
programs. There are two more techniques to reduce the number of objects
and therefore optimize programs:

1. Use a single equation in a Formula object instead of using separate
mathematical objects. For example, put the equation ((a + b) * c)/d
into a Formula object instead of using separate objects for addition,
multiplication, and division. Also, use constants in the formula instead of
constant objects connected to inputs. (Set constants with Set
Variable.)

2. Nest function calls within other function parameter lists. For instance, in
Figure 9-4, the function randomize uses the array generated by the
function ramp. In Figure 9-5, the function call to ramp is nested in the
call to randomize, resulting in slightly faster program execution.
328 Chapter 9

Optimizing Agilent VEE Programs
Basic Techniques for Optimizing Programs
Figure 9-4. Function Calls without Optimization

Figure 9-5. Function Calls with Optimization
Chapter 9 329

Optimizing Agilent VEE Programs
Basic Techniques for Optimizing Programs
Other Ways to Optimize Agilent VEE Programs

There are other optimization techniques that you can use in programs when
appropriate, as follows:

� Make sure you are using the VEE compiler by running your programs in
VEE 4 or higher Execution Mode. For more information, refer to
“Agilent VEE Execution Modes” on page 341.

� Run the program from the panel view instead of the detailed view. VEE
will have less objects to maintain on the screen.

� Use global variables rather than pass values (especially large arrays or
records) into and out of UserObjects and UserFunctions. Declare
all the global variables. This also allows you to use local variables. See
Data ⇒ Variable ⇒ Declare Variable.

� Collect data for graphical displays and plot the entire array at once rather
than plotting each individual scalar point. If the X values of a plot are
regularly spaced, use an XY Trace display rather than an X vs. Y Plot.

� Use one If/Then/Else object with multiple conditions instead of
multiple If/Then/Else objects.

� Set graphical displays to be as plain as possible. The settings that allow
the fastest update times are Grid Type ⇒ None and nothing checked
in the Properties dialog box. Only use AutoScale control pins where
necessary, and turn off the Automatic AutoScaling if not needed (in
the Scales folder).

� When reading data from a file, use the ARRAY 1D TO END: (*)
transaction instead of performing READ transactions on one element at a
time and using the EOF pin.

� When using Strip Charts and Logging AlphaNumeric displays,
set the Buffer Size in Properties to the smallest number possible
for your application.

� Use the triadic operator, (condition ? expression1 : expression2), instead
of the If/Then/Else object with Gates and a Junction.
330 Chapter 9

Optimizing Agilent VEE Programs
Basic Techniques for Optimizing Programs
� When using bitmaps, set them to Actual or Centered rather than
Scaled, since Scaled will take a few moments longer.

� When using indicators such as the Fill Bar or Thermometer, turn off
Show Digital Display.

� When using Color Alarms, if you are switching between colors
rapidly, turn off Show 3D Border.

In addition to the techniques already mentioned, linking compiled functions
in other languages to your VEE programs can increase execution speed.
Using compiled functions on PCs (as DLLs) are described in the next
section.
Chapter 9 331

Optimizing Agilent VEE Programs
Overview of Compiled Functions
Overview of Compiled Functions
You can use a compiled function in a VEE program, such as a DLL
(Dynamic Link Library). To do so, you must obtain the compiled function or
follow these steps to create it:

1. Write functions in C, C++, Fortran, or Pascal and compile them.

2. Write a definition file for the functions.

3. Create a shared library containing the compiled functions.

Benefits of Using Compiled Functions

Using compiled functions in a VEE program offers the following benefits:

� Faster execution speed

� Leveraging current test programs in other languages

� Developing data filters in other languages and integrating them into VEE
programs

� Securing proprietary routines

Note Adding compiled functions adds complexity to the development process.
Therefore, use a compiled function only when the capability or performance
that you need is not available with one of the following: a VEE
UserFunction, or an ActiveX Automation call to another program.
332 Chapter 9

Optimizing Agilent VEE Programs
Overview of Compiled Functions
Design Considerations in Using Compiled Functions

If you plan to use compiled functions in a VEE program, take the following
information into consideration:

� You can use any facilities available to the operating system including
math routines, instrument I/O, and so forth. However, you cannot access
any VEE internals from within the program to be linked.

� You need to provide error checking within your compiled function, since
VEE cannot trap errors in an external routine.

� You must de-allocate any memory you allocated in your external routine.

� When passing data to an external routine, make sure you configure the
Call object input terminals to the type and shape of data that the routine
requires.

� System I/O resources may become locked, so your external routine
should be able to handle this type of event.

� If your external routine accepts arrays, it must have a valid pointer for the
type of data it will examine. Also, the routine must check the size of the
array. If the routine changes the size, you need to pass the new size back
to the VEE program.

� The compiled function must use the return() statement as its last
statement, not exit(). If the compiled function exits, then so will VEE,
since a compiled function is linked to VEE.

� If you overwrite the bounds of an array, the result depends on the
language you are using. In Pascal, which performs bounds checking, a
run-time error will result, stopping VEE. In languages like C, where there
is no bounds checking, the result will be unpredictable, but may cause
intermittent data corruption or cause VEE to crash.
Chapter 9 333

Optimizing Agilent VEE Programs
Overview of Compiled Functions
Guidelines in Using Compiled Functions

When you use compiled functions in a VEE program, follow these
guidelines:

� Call and configure a Compiled Function just as you would call a
UserFunction. You can either select the desired function using
Select Function from the Call object menu, or you can type in the
name. In either case, provided VEE recognizes the function, the input
and output terminals of the Call Function object are configured
automatically. The necessary information is supplied by the definition
file. (VEE will recognize it if the library has already been imported.)

� Reconfigure the Call input and output terminals by selecting
Configure Pinout in the object menu. For either method, VEE
configures the Call object with the input terminals required by the
function, and with a Ret Value output terminal for the return value of
the function. In addition, there will be an output terminal corresponding
to each input that is passed by reference.

� Call the Compiled Function by name from an expression in a
Formula object or from other expressions evaluated at run time. For
example, you could call a Compiled Function by including its name
in an expression in a To File transaction.

Note Only the Compiled Function’s return value (Ret Value in the Call
object) can be obtained from within an expression. If you want to obtain
other parameters returned from the function, you will have to use the Call
object.

� Delete a library of Compiled Functions by using the Delete
Library object in the Device menu. Using the Import Library,
Call, and Delete Library objects, you can shorten the program load
time and conserve memory by importing and deleting them when the
program has finished calling them.
334 Chapter 9

Optimizing Agilent VEE Programs
Using Dynamic Link Libraries
Using Dynamic Link Libraries
On PCs, you can use the compiled functions from Dynamic Link Libraries
(DLLs) as a part of a VEE program. DLLs may be compiled functions that
you have written yourself (contact Microsoft for documentation about
writing DLLs), or DLLs that you have purchased or downloaded from the
Web.

Note VEE supports both the "_cdecl" and "_stdcall" calling conventions.
Most customer-written DLLs use the _cdec1 calling convention. Most
Win32 API calls use _stdcall. VEE supports both naming conventions, so
you can use most off-the-shelf DLLs as well as your own.

Integrating a DLL into an Agilent VEE Program

This section describes how to import a DLL into a VEE program. Write or
obtain the DLL as described above, then follow these steps to use the DLL:

1. Select Device ⇒ Import Library.

The Library Type is Compiled Function. For a Compiled
Function, the Import Library object includes a field for the
Definition File, as shown in Figure 9-6.

Figure 9-6. Importing a Library of Compiled Functions
Chapter 9 335

Optimizing Agilent VEE Programs
Using Dynamic Link Libraries
The fields are described as follows:

Note You can also load a library manually during the development phase by
selecting Load Lib from the object menu.

2. Select Device ⇒ Call.

When you have imported the library with Import Library, create a Call
object by selecting Device ⇒ Call. You can then call the Compiled
Function by choosing Select Function from the Call object menu,
and choosing the desired function from the list box presented. For example,
the Call object shown in Figure 9-7 calls the Compiled Function in
myLibrary named myFunction with the parameters arraySize and
array.

Figure 9-7. Using Call Object for Compiled Functions

VEE automatically configures the Call object with the function name,
and the proper number of input and output pins. The second, third...
output pins map to any parameters passed by reference to the function. If
you have entered the function name, you can also configure the object by
selecting Configure Pinout in the object menu.

Library Name The name VEE uses to identify the library.
Generally, this is used if you want to delete the
library after it has been used in the program.

File Name File that holds the shared library.

Definition File The include file with the prototypes of the functions.
This is usually a *.h file.
336 Chapter 9

Optimizing Agilent VEE Programs
Using Dynamic Link Libraries
Note You can also call a DLL function from an expression field, provided the
library has been loaded. When used in this way, you must enclose the
parameters in parentheses after the function name, and the function only
sends back its return value. Any parameters passed by reference can only be
retrieved by using the Call object. For example, you might use the
following expression in a Formula object:

2 * yourFunc(a,b)

The a and the b would refer to two input pins on the Formula object, and
the return value of yourFunc would be multiplied by 2 and placed on the
output pin.

3. (Optional) Click Device ⇒ Delete Library.

While developing the program, you can also select Delete Lib from
the object menu to delete the library programmatically. Deleting the
library after it has been used in the program reduces load time and
conserves memory.

An Example Using a DLL

In this exercise, you will import a DLL and call a function from the DLL.
The DLL used is included with the VEE product on Windows. (The same
program is designed to work on all platforms.)

Open the manual49.vee file. It is located under:

<installation directory>\EXAMPLES\MANUAL\MANUAL49.

Examine this example closely. It should look like Figure 9-8.
Chapter 9 337

Optimizing Agilent VEE Programs
Using Dynamic Link Libraries
Figure 9-8. A Program Using a DLL (MANUAL49)

Import
Library

Before the first call to the compiled function Call
Function, the DLL must be loaded using the Import
Library object (in the Device menu).

Call
Function

MANUAL49 calls a compiled function called myFunc.
MyFunc requires a C datatype called long, which is the
same as a VEE Int32. This number specifies the size of an
array. The second input parameter is a pointer to an array of
reals. The definition file is located in MANUAL49.H, and the
source file for the C code is located in MANUAL49.C.
MyFunc adds 1 to every element of the array.

Function
Generator

The Function Generator is used to create a waveform,
which is output to the array pin on the Call myFunc object.
338 Chapter 9

Optimizing Agilent VEE Programs
Using Dynamic Link Libraries
Run the program and notice that the second trace is one greater than the first
trace at all points on the waveform.

Another key point to notice in the program is the method used for making it
portable to all VEE platforms. Windows 95, Windows 98, Windows 2000,
and Windows NT 4.0 use a Microsoft 32-bit compiler. These DLLs are all
indicated using a *.dll extension.

The UserObject called Shared Library Name identifies the operating
system being used, and then transmits the correct library name to the
Import Library object, as shown in Figure 9-9.

Figure 9-9. The Shared Library Name UserObject

The whichos() function has been used in a renamed Formula object to
identify the operating system. An expanded If/Then/Else object

totSize The totSize object (in the Math & Functions box) is
used to determine the size of the waveform, which is output
to the arraySize input pin on Call myFunc.

XY Trace The XY Trace object displays both the original and the
new waveforms

Formula The Call object output pin labeled Ret Value holds the
size of the returned array, so that expression B[0:A-1] in
the Formula object correctly specifies this array to the
display object.
Chapter 9 339

Optimizing Agilent VEE Programs
Using Dynamic Link Libraries
examines the output of the whichos() function, then triggers the
appropriate text constant. This filename extension is then added to the
MANUAL49 file using a renamed Formula object. (The input terminal on the
Formula object labeled shared library has also been changed to ext.)

A control pin for a File Name has been added to the Import Library
object; hence, there is a dotted line between the UserObject and the
Import Library.
340 Chapter 9

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Agilent VEE Execution Modes
Agilent VEE Execution Modes allow you to run programs that were created
using previous versions of VEE. The Execution Modes allow a newer
version of VEE to run programs created with an older version of VEE in
exactly the same way the older VEE version ran them. This makes VEE
backward compatible to support your existing programs.

Note Execution Mode was known as compatibility mode in previous versions of
VEE.

VEE has four execution modes:

� VEE 6 (adds new data types)
� VEE 5 (adds ActiveX)
� VEE 4 (compiled)
� VEE 3.x

The execution mode of the program you are running is displayed in the
status bar of VEE, as shown in Figure 9-10.

Existing programs that are opened in VEE will run by default in the
Execution Mode for the VEE version in which they were created. For
example, a VEE 5.0 program opened in VEE 6.0 will run in VEE 5
Execution Mode by default.
Chapter 9 341

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Figure 9-10. Execution Mode Display in VEE Status Bar

The Agilent VEE Compiler

The VEE compiler is automatically enabled in VEE 4 and higher Execution
Modes. The compiler provides much faster program execution, as well as
more predictable object propagation. For more information about the
compiler and details of the differences between the Execution Modes, refer
to the VEE OneLab Advanced Techniques manual.

Changing the Execution Mode

You should create all new programs in VEE 6 mode. If you have existing
programs, you will want to change the execution mode if you add any new
features to an existing program. For example, if you have a program written
in VEE 5.0 and you add a new feature from VEE 6.0, you should change the
execution mode to VEE 6. Otherwise, the VEE 5.0 program may not run
correctly.

To change the execution mode, follow these steps:

Execution mode
342 Chapter 9

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
1. From the main VEE menu, click File ⇒ Default Preferences, or
press the Default Preferences button on the tool bar as shown in Figure
9-11.

Figure 9-11. Default Preferences Button on Toolbar

2. In the General folder (already displayed, since it is the first folder),
under Execution Mode, select VEE 6.0 as shown in Figure 9-12. In the
same folder, make sure that Disable Debug Features is not selected.
Click OK.

Figure 9-12. Changing the Execution Mode in Default Preferences

Default Preferences Button

Execution mode
set to VEE 6

Disable Debug
Features turned
OFF (not
checked)
Chapter 9 343

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Effect of Changing the Execution Mode

The following example demonstrates the increase in speed when a program
is updated. These example focuses on the program speed without instrument
I/O.

1. Open the chaos.vee program in the examples\Applications
subdirectory.

This program illustrates explosive population growth. You can modify
the program, as shown here, by using a Timer object to check the
results. These examples were run using a 300MHz HP Pavillion PC on
Windows 95 with two other large applications running concurrently.

In Figure 9-13, the program execution is timed with the displays open in
VEE 3 execution mode.
344 Chapter 9

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Figure 9-13. Chaos.vee in VEE 3 Mode with Open Displays

In Figure 9-14, the displays are iconized to improve speed without turning
on the compiler. This cuts execution time about 1/6.

Timer
Chapter 9 345

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Figure 9-14. Chaos.vee in VEE 3 Mode with Closed Displays

Finally, in Figure 9-15, the compiler is turned on with the debugging features
disabled. For optimum performance, check the Disable Debug
Features box in File ⇒ Default Preferences when the program is
fully debugged and ready to use.

The debugging features enable tools including the Show Execution Flow
and Activate Breakpoints. When you check Disable Debug
Features, this makes improvements in the size (in memory) and speed of
the program. As you can see, the program runs about 12 times faster. These
three figures show how you can get the best speed results by combining
optimization techniques with the compiler.
346 Chapter 9

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Figure 9-15. Chaos.vee in VEE 4 or Higher Mode with Debugging
Disabled

In Figure 9-16 and Figure 9-17, the VEE speed improvements use the
compiler on areas of programs involving iterative scalar math routines. The
example calculates the square root of a scalar value. (The result is not kept.)
By using the compiler, the speed is approximately 107 times faster than
using the VEE 3 execution mode.
Chapter 9 347

Optimizing Agilent VEE Programs
Agilent VEE Execution Modes
Figure 9-16. Iterative Math Example in VEE 3 Mode

Figure 9-17. Iterative Math Example Using VEE 4 or Higher Mode

VEE includes the execution modes because there are a few programming
choices allowed in older versions of VEE that are not permitted in the
current version (they now produce error messages). Furthermore, with some
of the advances in the ActiveX Automation and Control capabilities, some
programs that ran in VEE 4 or VEE 5 modes require minor modifications to
run in VEE 6 mode. For details about the differences between the Execution
Modes, refer to the VEE OneLab Advanced Techniques manual. For all new
programs you should begin in VEE 6 mode.
348 Chapter 9

Optimizing Agilent VEE Programs
Chapter Checklist
Chapter Checklist
You should now be able to perform the following tasks. Review topics, if
necessary.

� Explain three basic techniques for optimizing VEE programs and give
examples of each.

� Explain at least two more techniques in addition to the three above.

� Explain the basic concept of a DLL.

� Import a DLL, call a function within it, then delete the DLL.

� Step through a program using the VEE 6 execution mode or the VEE 5,
VEE 4, or VEE3 execution modes, and explain the reasons you would
choose one or the other.
Chapter 9 349

Optimizing Agilent VEE Programs
Chapter Checklist
350 Chapter 9

A

Additional Lab Exercises

Additional Lab Exercises
Additional Lab Exercises

The following exercises give you a chance to practice the VEE concepts you
have learned in this book. The exercises are divided into categories.

To use this appendix, develop a solution and then compare it to the answers
listed. There are many ways to program a given task, so you have a valid
solution if it meets the problem specifications. However, programs that
execute more quickly and are easier to use are probably better solutions.
Each solution includes a short discussion of key points.
352 Appendix A

Additional Lab Exercises
General Programming Techniques
General Programming Techniques

Apple Bagger

You want to know how many apples it takes to fill a ten pound basket.
Create a VEE program that counts how many apples it takes to fill the
basket. Each apple weighs between 0 and 1 pound.

Suggestions

This program can be created with 10 or fewer objects. Choose from the
following objects:

Start
Until Break
random() function
Accumulator
Break
Real64
Conditional (A>=B)
Stop
Counter
If/Then/Else
Alphanumeric

Note The VEE programs for many of the lab exercises and programming
examples in this manual are included in VEE, under Help ⇒ Open
Example... ⇒ Manual ⇒ UsersGuide.
Appendix A 353

Additional Lab Exercises
General Programming Techniques
Solution 1—Apple Bagger

Figure A-1 shows one solution to the Apple Bagger exercise.

Figure A-1. Apple Bagger, Solution 1

Key Points

� Optimal Solutions: To optimize the performance of programs, use fewer
objects, if possible. This solution uses six objects. The program could
also be implemented with 10 objects, as Figure A-2 shows.

� Until Break and Break Objects: Use these objects for loops that require
testing a condition. In this example, the loop should stop when the total
weight of the apples is greater than 10 pounds.

� Accumulator: Use the Accumulator to keep a running total.

� Counter: Use the Counter to keep a running count. In this example, the
Counter is used to track the total number of apples in the basket. Note
that when the total weight is over 10, only the Then pin fires on the
If/Then/Else object giving the correct answer in the Counter.
354 Appendix A

Additional Lab Exercises
General Programming Techniques
Solution 2—Apple Bagger

Figure A-2 gives another solution using more objects.

Figure A-2. Apple Bagger, Solution 2

Key Points

� Start: Using a Start object for this program is redundant, since you can
use the Run button on the main menu bar. Start is best used when you
have two programs on a screen, and you want to be able to run them
independently. Or you have a program with a feedback loop, and you
want to define where to initiate execution.

� Shift Register: You use a Shift Register to access the previous
values of the output. In solution 2, the Counter is keeping a running
count of every apple before it is weighed, so the count must be reduced
by one when the total weight exceeds 10.

� Gate: The Gate is used to hold the output until another action occurs and
activates its sequence pin. Here, when the condition A<=10 is no longer
true, the Else pin on the If/Then/Else object activates the gate.
Appendix A 355

Additional Lab Exercises
General Programming Techniques
Testing Numbers

Testing Numbers, Step 1

Create a program that allows a user to enter a number between 0 and 100. If
the number is greater than or equal to 50, display the number. If it is less
than 50, display a pop-up box with the message “Please enter a number
between 50 and 100.”

Suggestions

This program can be created with 5 or fewer objects. Choose from the
following objects:

Start
Int32
Slider
Real64
If/Then/Else
Formula
Gate
Text
Junction
Alphanumeric
Message Box
356 Appendix A

Additional Lab Exercises
General Programming Techniques
Solution—Testing Numbers, Step 1

Figure A-3 shows a solution to the Testing Numbers exercise using five
objects.

Figure A-3. Testing Numbers (pop-up shown)

Testing Numbers, Step 2

After the model is working with five objects (the Message Box produces the
pop-up), try programming it with four objects without using the Gate
object.
Appendix A 357

Additional Lab Exercises
General Programming Techniques
Solution—Testing Numbers, Step 2

Figure A-4 shows the solution to the Testing Numbers exercise with four
objects.

Figure A-4. Testing Numbers, Step 2

Key Points

� Auto Execute: All input objects such as the Int32 Slider have an
Auto Execute selection in the Properties Box. If chosen, the
object operates whenever its value is changed without needing to press
Start or the Run button.

� Eliminating Gates: The expression (A>=50)*A in the If/Then/Else
object evaluates to a 1*A, if A>=50 is true, or 0, if false. So A is put on
the Then pin, if the expression is true, and a 0 is put on the Else pin, if
the expression is false. (Any expression that evaluates to a non-zero is
considered true, and the value is propagated on the Then pin.)

Testing Numbers, Step 3

Create a solution using only three objects.

Hint: Use a triadic expression in the Formula object. The format is:
(<expression> ? <if TRUE,output value> : <if FALSE, output value>).
For example, if A < 10 evaluates to TRUE, you want the value of A on the
Result pin; otherwise, you want the string “FALSE” on the Result pin.
You would use the following triadic expression: (A<10 ? A : "FALSE").
358 Appendix A

Additional Lab Exercises
General Programming Techniques
Solution—Testing Numbers, Step 3

Figure A-5 shows the solution to the Testing Numbers exercise using only
three objects.

Figure A-5. Testing Numbers, Step 3

Note This could be implemented using a Real64 Input dialog box with its
automatic error-checking capability. However, the operator must enter a
valid number before the program can complete.
Appendix A 359

Additional Lab Exercises
General Programming Techniques
Collecting Random Numbers

Create a program that generates 100 random numbers and displays them.
Record the total time required to generate and display the values.

Suggestions

This program can be created with six or fewer objects. Choose from the
following objects:

Start
For Range
Until Break
randomseed() function
random() function
Collector
Formula
Set Values
Alloc Int32
Logging AlphaNumeric
Strip Chart
Meter
Date/Time
Timer
Now()
Break
Do

Hint

To improve performance, send the data to the display only once by first
collecting the data into an array using the Collector object. Note the
performance differences.
360 Appendix A

Additional Lab Exercises
General Programming Techniques
Solution—Collecting Random Numbers

Figure A-6 shows a solution for the exercise Collecting Random Numbers.

Figure A-6. Collecting Random Numbers

Key Points

� Logging AlphaNumeric vs. AlphaNumeric: Use Logging
AlphaNumeric to display consecutive input (either Scalar or Array
1D) as a history of previous values. Use AlphaNumeric to display data
from only one execution (the last) as a single value, an Array 1D, or an
Array 2D. The Logging display is an array without index values; the
AlphaNumeric display is the same array with optional index numbers
and values.
Appendix A 361

Additional Lab Exercises
General Programming Techniques
� Timing Pins: The Do object controls which object executes first. The
end of the program is timed from the sequence out pin of the For Count
object, because that pin does not fire until all objects inside the loop have
executed.

Random Number Generator

Random Number Generator, Step 1

Create a random number generator that requires external inputs. Display the
numbers on a strip chart. Inputs should be allowed for:

Maximum random number
Minimum random number
Number of random numbers generated

Solution—Random Number Generator, Step 1

Figure A-7 shows a solution for the first step of the Random Number
Generator exercise.

Figure A-7. Random Number Generator, Step 1
362 Appendix A

Additional Lab Exercises
General Programming Techniques
Key Points

� Layout of Slider Objects: You can select either a vertical or horizontal
format for the screen image of the slider objects by clicking on
Horizontal under Layout in the Properties box.

� XY Trace: Use an XY Trace to display the recent history of data that is
continuously generated.

Random Number Generator, Step 2

Collect the random numbers into an array. Find the moving average and
display it with the numbers.

Solution—Random Number Generator, Step 2

Figure A-8 shows a solution for Random Number Generator, step two.

Figure A-8. Random Number Generator, Step 2
Appendix A 363

Additional Lab Exercises
General Programming Techniques
� MovingAvg(x, numPts): Use this object located in the Function &
Object Browser, Data Filtering category to smooth the input data
using the average of a specified number of data points preceding the
point of interest to calculate the smoothed data point.

Using Masks

Mask Test, Step 1

Create a 50 Hz sine wave with an adjustable amount of noise. Test the
noisy sine wave to be certain that it stays below the following limits:

(0,0.5)
(2.2m, 1.2)
(7.2m, 1.2)
(10.2m, 0.5)
(20m, 0.5)

If the sine wave exceeds the limits, mark the failing points with a red
diamond.

Hints

You can change the format of the displays from lines to dots to diamonds. (In
Properties, choose the Traces tab for each trace input, the line type can
be solid, dashed, points only, etc. Also the Point Type can be just a point,
a diamond, box, or other shapes.) You may find the Comparator object
helpful.
364 Appendix A

Additional Lab Exercises
General Programming Techniques
Solution—Using Masks, Step 1

Figure A-9 shows a solution for step 1.

Figure A-9. The Mask Test, Step 1

Using Masks, Step 2

Add to the program to calculate and display the percentage of failures.
Appendix A 365

Additional Lab Exercises
General Programming Techniques
Solution—Using Masks, Step 2

Figure A-10 shows a solution for step 2.

Figure A-10. Mask Test, Step 2

Key Points

� Mask: The mask is created using the Data ⇒ Constant ⇒ Coord
object, then configuring it for five array elements. You input the
coordinate pairs separated by commas and VEE adds the parentheses.
The x values were chosen knowing that the time span of the waveform
was 20 milliseconds. Also, note that the Waveform (Time) display
will accept a Coord data type as an input. You could also use a Data ⇒
Build Data ⇒ Arb Waveform object, which converts a Coord to a
Waveform data type by specifying the number of points in the
Waveform.

� Comparator: This object compares a test value against a reference
value. Once again, you can compare a waveform to an array of
coordinate pairs. The Failures pin gives you an array of the data points
that failed, which you can send to the display and highlight with a
different color or type of line.
366 Appendix A

Additional Lab Exercises
General Programming Techniques
� TotSize: This object simply gives you the number of elements in an
array. Since this array contains the number of failures, dividing this by
the total number of elements in the original waveform, 256, and
multiplying by 100 gives us the percentage of failures.

� Formula: A/256*100 is the formula used to compute the percentage of
failures, since the Function Generator and Noise Generator are
set to put out 256 points.
Appendix A 367

Additional Lab Exercises
Using Strings and Globals
Using Strings and Globals

Manipulating Strings and Globals

Using string objects or functions, create a program that accepts a user’s name
in the following format: <space> <firstname> <space> <lastname>. After
the user enters a name, have the program strip off the first name and only
print the last name. Store the string into a global variable. Retrieve the string
using the Formula object.

Solution—Manipulating Strings and Globals

Figure A-11 shows a solution to the exercise Manipulating Strings and
Globals.

Figure A-11. Manipulating Strings and Global Variables
368 Appendix A

Additional Lab Exercises
Using Strings and Globals
Key Points

� String Objects and Functions: StrTrim(str) first strips off any
spaces or tabs from the front and back of the name. StrPosChar(str1,
" ") yields the index of the space character between the firstname
and lastname. StrLen(str), of course, gives the length of the string.
All of these were performed using the string objects, but they could also
be done using string functions within a Formula object.

� Formula Object: StrFromThru(A,B+1,C-1) takes the string from
input A, adds 1 to the index of the space from input B, and subtracts 1
from the string length at input C. (Recall that all indexing is zero-based.)

� Set Variable: Notice how easily you can set a global variable called
lastname, which can then be referenced in any expression field, such as
the Formula object in this example.

� Optimizing: The three formulas could be combined into one formula. It
is recommended to leave strTrim() on its own since its output is used
multiple times, but the others could be combined into one to optimize
speed. (This could reduce readability, however.)
Appendix A 369

Additional Lab Exercises
Optimizing Techniques
Optimizing Techniques
For this lab, you will build a VEE program two different ways and note the
difference in execution speed.

Optimizing Techniques, Step 1

Create a program that sends the range 0 to 710 step 10 through both a
sine function and cosine function. Put the results of the functions on an X
vs.Y display. Use the Timer object to clock how long the program takes.
(Set your default preferences for Trig Mode to Radians.)

Solution—Optimizing Techniques, Step 1

Figure A-12 shows a solution to step 1.

Figure A-12. Optimizing VEE Programs, Step 1

Optimizing Techniques, Step 2

Clone all of the objects from the first program. Modify the new set to collect
the range into an array. Now, the sine and cosine functions are run
against an array of points, and only plotted one time. Note the time savings.
370 Appendix A

Additional Lab Exercises
Optimizing Techniques
Solution—Optimizing Techniques, Step 2

Figure A-13 shows a solution to step 2.

Figure A-13. Optimizing VEE Programs, Step 2

Key Points

� Optimizing with Arrays: Note the increase in performance between
step 1 and step 2 that comes from using arrays. Whenever possible,
perform analysis or display results using arrays rather than scalar
values.

� X vs. Y Display: This example uses this display instead of the
Waveform or XY displays, because there is separate data for the X and Y
data.
Appendix A 371

Additional Lab Exercises
UserObjects
UserObjects

Random Noise UserObject

Random Noise UserObject, Step 1

Create a UserObject that generates a random noise waveform. Display the
noisy waveform and the noise spectrum outside the UserObject. Provide
control outside the UserObject for the following: amplitude, number
of points, interval (time span), DC offset.

Note Do not use a virtual source inside the UserObject. Use objects such as
Build Waveform and Random to create the UserObject.
372 Appendix A

Additional Lab Exercises
UserObjects
Solution—Random Noise UserObject

Figure A-14 shows a solution for the Random Noise UserObject.

Figure A-14. A Random Noise UserObject

Solution—NoiseGen Object in Random Noise

Figure A-15 shows a solution for the NoiseGen UserObject.
Appendix A 373

Additional Lab Exercises
UserObjects
Figure A-15. The NoiseGen UserObject

Key Points

� UserObject: Notice that the UserObjects you build are essentially
customized objects that you add to VEE.

� Build Waveform: This object creates a Waveform data type from a
Real array of amplitude values and a time span (the length of time in
seconds over which the y data was sampled).
374 Appendix A

Additional Lab Exercises
Agilent VEE UserFunctions
Agilent VEE UserFunctions

Using UserFunctions

UserFunctions, Step 1

Create a function called NoiseGen that accepts an amplitude value (0-1)
from a slider and returns a noisy waveform.

Do Not Use
Virtual Source
For Count
For Range

Do Use
Formula
Ramp
Build Waveform

Hint

Use randomize(array, -a,a) where the array must be 256 points, and a
is the amplitude. Build a simple main program that calls this function to be
certain the function works correctly.
Appendix A 375

Additional Lab Exercises
Agilent VEE UserFunctions
Solution—UserFunctions, Step 1

Figure A-16 shows a solution for step 1.

Figure A-16. User Functions, Step 1

Key Points

� Ramp(): Notice that the ramp() function is used to generate an array of
256 points within the parameter list for randomize().

� Build Waveform: Notice that the default time span is 20 milliseconds,
so that you only need to send an array to this object to build a waveform.
376 Appendix A

Additional Lab Exercises
Agilent VEE UserFunctions
UserFunctions, Step 2

In the same program, create another function called AddNoise that calls the
first function NoiseGen. AddNoise should add the noisy waveform from
the NoiseGen function to a sine wave. AddNoise should have two inputs,
one for the NoiseGen amplitude and one for the sine wave. It should have
one output for the result.

Build a simple main program with a slider for the noise amplitude, and the
Virtual Source ⇒ Function Generator (sine wave, Freq = 100
Hz) for the good waveform to add to the noise. Display the resultant
waveform.
Appendix A 377

Additional Lab Exercises
Agilent VEE UserFunctions
Solution—UserFunctions, Step 2

Figure A-17 shows a solution for step 2.

Figure A-17. User Functions, Step 2

UserFunctions, Step 3

In the same program, call the AddNoise function again, this time from a
Formula object, taking the absolute value of the result. Display the absolute
value waveform on the same display. Next prepare to edit the AddNoise
function. Turn on Debug ⇒ Show Data Flow. Leave the AddNoise
window open and run the program. Notice how useful this capability is for
debugging.
378 Appendix A

Additional Lab Exercises
Agilent VEE UserFunctions
Solution—UserFunctions, Step 3

Figure A-18 shows a solution for step 3.

Figure A-18. User Functions, Step 3

UserFunctions, Step 4

Now change the program so that the slider sets a global variable called
Amplitude. Have the NoiseGen function use that global (so NoiseGen will
no longer require an input pin). Make the program run correctly. Save this
file as uflab.vee.
Appendix A 379

Additional Lab Exercises
Agilent VEE UserFunctions
Solution—Using UserFunctions, Step 4

Figure A-19 shows a solution for step 4.

Figure A-19. User Functions, Step 4

Hint: Notice the Call AddNoise and Formula objects use the global
Amplitude, so both of the objects need to run after the Set Amplitude
object executes. Connecting the Sequence pins from Set Amplitude to
Call AddNoise, and Call AddNoise to Formula ensure the objects
execute in the required order.
380 Appendix A

Additional Lab Exercises
Creating Operator Panels and Pop-ups
Creating Operator Panels and Pop-ups
Creating Operator Panels and Pop-ups, Step 1

Create a panel to ask an operator to enter numbers. Create a UserObject to
interact with an operator. Ask the operator for 2 inputs, A and B. Send both
inputs to a display. Use a UserObject with Show On Execute checked to
display the panel.
Appendix A 381

Additional Lab Exercises
Creating Operator Panels and Pop-ups
Solution—Creating Operator Panels and Pop-ups, Step 1

Figure A-20 shows a solution in detail view. Figure A-21 shows the panel
that appears when the program runs.

Figure A-20. UserObject to Ask Operator to Input A and B

Figure A-21. Panel for Operator to Enter A and B
382 Appendix A

Additional Lab Exercises
Creating Operator Panels and Pop-ups
Key Points

� UserObject Properties: In the UserObject Properties dialog box,
select Pop-Up Panel and click to turn on Show Panel On Execute.
Change the Pop-Up Panel ⇒ Panel Title name to “Enter A or
B.”

Creating Operator Panels and Pop-ups, Step 2

Instead of displaying both A and B, ask the operator whether to display A or B
if the two numbers are different. After asking for the two values, if the
values A and B are equal, display the value. If the two values A and B are
different, ask the operator to pick a value to display. Display A or B
depending on the operator’s choice.

HINT: Add another UserObject with a pop-up panel that is set to Show
Panel on Execute, and ask the operator for the value there.
Appendix A 383

Additional Lab Exercises
Creating Operator Panels and Pop-ups
Solution—Creating Operator Panels and Pop-ups, Step 2

Figure A-22 shows the UserObject that asks the operator to make a choice
when A and B are different numbers. Figure A-23 shows the second pop-up
panel that appears to ask the operator whether to display A or B.

Figure A-22. UserObject to Ask Operator Whether to Display A or B

Figure A-23. Panel for Operator to Choose Whether to Display A or B
384 Appendix A

Additional Lab Exercises
Creating Operator Panels and Pop-ups
Key Points

� Gate: The Gate object only sends a value if the two numbers are equal.

� Junction: The JCT object allows multiple inputs to the object
Alphanumeric. The JCT object is a “wired OR” object.

� List Object as a Menu: Note the use of the Data ⇒ Selection
Controls ⇒ List object edited for two choices and formatted for a
list. This configuration will output a text A or B. If you need the ordinal
value (0 or 1), then use the List object's ordinal data output instead.

Creating Operator Panels and Pop-ups, Step 3

If the operator does not enter numbers, generate an error message. On the
second UserObject, which asks the operator to choose whether A or B is
displayed when the two numbers are different, add an error. If the operator
does not choose A or B within 10 seconds, generate the error.
Appendix A 385

Additional Lab Exercises
Creating Operator Panels and Pop-ups
Solution—Creating Operator Panels and Pop-ups, Step 3

Figure A-24 shows the UserObject modified to generate an error if the
operator does not choose A or B in 10 seconds.

Figure A-24. Generate an Error if Operator Does Not Enter a Choice

Key Points

� Exit UserObject: If the user responds in under 10 seconds, this object
will exit the UserObject, even though the Delay object may not have
finished executing.
386 Appendix A

Additional Lab Exercises
Creating Operator Panels and Pop-ups
� Delay and Raise Error: After 10 seconds the Delay object pings the
Raise Error object, which will pause execution of the program and
display the Error Message you have typed in. A red outline will also
appear around the object that caused the error, which goes away when
you click on the Stop or Run buttons on the main menu bar.

� OK and Delay: Notice the two threads in AnotB are separate, so that
the OK and Delay are both running concurrently.
Appendix A 387

Additional Lab Exercises
Working with Files
Working with Files

Moving Data To and From Files

Create a VEE program to write the time of day to a file. Generate 100
random points and write them to the file. Calculate the mean and standard
deviation of the numbers and append them to the file in the following
format:

Mean: xxxxxx
Std Dev: yyyyyy

Next, read only the mean and standard deviation from the file. Figure A-25
shows moving data to and from files.

Solution—Moving Data To and From Files

Figure A-25 shows a solution for moving data to and from files.

.

Figure A-25. Moving Data To and From Files
388 Appendix A

Additional Lab Exercises
Working with Files
Key Points

� Generating an Array: Use randomize(ramp(100,0,1), 0, 1) in
the Formula object to create an array of 100 random numbers. The
ramp() function generates an ordered array and delivers it to the
randomize() function, which then generates random values between 0
and 1.

� Time Stamp: The now() function is used in the expression field of the
I/O Transaction dialog box for transaction one in the To File
object. When you change the format to TIME STAMP FORMAT, the dialog
box displays additional buttons to specify how the time will be stored.

� Storing Two Values in a Line: In both the third and fourth transactions
in the To File object, a constant Text string is stored, followed by a
Real value. For example, in the third transaction you type "Mean: ",B
in the expression field of the I/O Transaction box (assuming the
mean value will be on the B input pin).

� Extracting a Value From a File: To get to the mean and standard
deviation, first send an EXECUTE REWIND to position the read pointer at
the beginning. Then use NULL with the proper format to READ past the
time stamp and real array. (This will throw away the values read instead
of putting them in an output terminal.) Finally, read the last two lines in
the file as strings.

� Junction: Use the Flow ⇒ Junction object to connect more than one
output to a single input, such as connecting the mean and sdev outputs
to the Logging AlphaNumeric display.
Appendix A 389

Additional Lab Exercises
Records
Records

Manipulating Records

Manipulating Records, Step 1

Build a record with three fields holding an integer, the time right now as a
string, and a four element array of reals. The fields should be named int,
daytime, and rarry, respectively. Merge this record with another that
holds a random number between 0 and 1, and a waveform. Name these fields
rand and wave.
390 Appendix A

Additional Lab Exercises
Records
Solution—Manipulating Records, Step 1

The resulting record should have five fields, as shown in Figure A-26.

Figure A-26. Manipulating Records, Step 1

Key Points

� Time Stamp: Use the now() function within the To String object to
create your time stamp for this program. Then you can specify the
format.

� Configuring a Data Constant as an Array: Any data type in the Data
⇒ Constant menu can become an array by selecting Properties,
then under Configuration choose 1D Array. The size may be entered
here, or as you are typing in the values an Enter will keep appending
values.
Appendix A 391

Additional Lab Exercises
Records
� Naming Fields: By renaming the input terminals on the Build Record
object, you can give your record specific field names such as int, rand,
and wave.

� The Default Value Control Input: A Record Constant makes an
excellent interactive display object by adding a Default Value
Control pin. The Record Constant will automatically configure
itself for the record it receives.

Manipulating Records, Step 2

Use a conditional expression in a Formula object to test the random value
in the record, and display either the value or a text string. If the value is less
than 0.5, display that random value; otherwise, output a text string “More
than 0.5." Next, extract only the time and the waveform.

Hint

Do not use a Formula object to extract the time and waveform. Display this
record with an AlphaNumeric object.
392 Appendix A

Additional Lab Exercises
Records
Solution—Manipulating Records, Step 2

Figure A-27 shows manipulating records, step 2.

Figure A-27. Manipulating Records, Step 2

Key Points

� Using a Conditional Expression: VEE supports a conditional
expression, which provides an efficient way to implement an if-then-else
action. The conditional expression in this Formula object is known as a
triadic. It is (a.rand < 0.5? a.rand: "More than 0.5"). Notice
that it is all one expression, and you can write it with line breaks in the
Formula object as shown. If there were more than one expression in the
Formula object, the expressions would be separated with semi-colons
(;).

� The Sub Record Object: Notice the Text array of the fields on the Sub
Record input pin labeled fields. When you configure the Sub Record
object to include fields, it will output a record that only contains the
fields specified.
Appendix A 393

Additional Lab Exercises
Records
Manipulating Records, Step 3

Replace the integer input for the first field with a For Count object and
step through 10 iterations. Be certain to “ping” the random number generator
and the time function on each iteration. Send the complete record into a To
DataSet object. In a separate thread, retrieve all records from the dataset
where the random value is greater than 0.5. Put the resultant records into a
record constant

Hint

You'll need a control pin for a Default Value on the Record Constant
object.
394 Appendix A

Additional Lab Exercises
Records
Solution—Manipulating Records, Step 3

Figure A-28 shows a solution for manipulating records, step 3.

Figure A-28. Manipulating Records, Step 3

Key Points

� The To DataSet Object: The Clear File at PreRun option only
clears the file before data is sent the first time. Notice that the program
sends 10 different records to the same file sequentially, and they are
appended to the file.

� The From DataSet Object: This object is configured to retrieve all
records where the rand field is greater than 0.5. In this case, five out of
ten records meet that criterion and the first record is shown with an index
number of 0.
Appendix A 395

Additional Lab Exercises
Records
396 Appendix A

Glossary

Glossary

This Glossary defines terms used in this manual. For a complete glossary of
VEE terms, select Help ⇒ Contents and Index. Next, select
Reference. Then, select Glossary. In the glossary, clicking a term
displays a definition. When you have finished reading the definition, click
anywhere to clear the text.

Button
A graphical object in VEE that simulates a momentary switch or
selection button, and which appears to pop out from the screen. When
you “press” a button in VEE, by clicking on it with the mouse, an action
occurs. (May also refer to the left or right mouse button.)

Cascading Menu
A sub-menu on a pull-down or pop-up menu that provides additional
selections.

Checkbox
A recessed square box on VEE menus and dialog boxes that allows you
to select a setting. To select a setting, click the box and a check mark
appears in the box to indicate a selection has been made. To cancel the
setting, simply click the box again.

Click
To press and release a mouse button. Clicking usually selects a menu
feature or object in the VEE window. See also Double-Click and Drag.

Clone
A menu item on the VEE object menus that duplicates objects and their
interconnections, placing a copy of them in the Paste buffer. Clone
copies all the attributes of the cloned objects including pins, parameters,
and size.
398 Glossary

Component
A single instrument function or measurement value in a VEE instrument
panel or component driver. For example, a voltmeter driver contains
components that record the range, trigger source, and latest reading.

Component Driver
An instrument control object that reads and writes values to components
you specifically select. Use component drivers to control an instrument
using a driver by setting the values of only a few components at a time.
(Component drivers do not support coupling.)

Container
See Data Container.

Context
A level of the work area that can contain other levels of work areas (such
as nested UserObjects), but is independent of them.

Cursor
A pointer (caret) in an entry field that shows where alphanumeric data
will appear when you type information from the keyboard.

Cut Buffer
The buffer that holds objects that you cut or copy. You can then paste the
object back into the work area with the Paste toolbar button
(Edit ⇒ Paste).

Data Container
The data package that is transmitted over lines and is processed by
objects. Each data container contains data and the data type, data shape,
and mappings (if any).

Data Flow
The flow of data through and between VEE objects. Data flows from left
to right through objects, but an object does not execute until it has data on
all of its data input pins. Data is propagated from the data output pin of
one object to the data input pin of the next object. Data flow is the chief
factor that determines the execution of a VEE program.
Glossary 399

Data Input Pin
A connection point on the left side of an object that permits data to flow
into the object.

Data Output Pin
A connection point on the right side of an object that propagates data
flow to the next object and passes the results of the first object’s operation
on to the next object.

Data Shape
Each data container has both a shape and type. The data shape can be
either a scalar or an array of one or more dimensions. In VEE, a one-
dimension array is called Array 1D, a two-dimension array is Array 2D,
and so forth.

Data Type
Each data container has both a type and shape. VEE supports many data
types including Text, Real64, Real32, and Int32.

Detail View
The view of a VEE program that shows all the objects and the lines that
connect them.

Direct I/O Object
An instrument control object that allows VEE to directly control an
instrument without using an instrument driver.

Double-Click
To press and release a mouse button twice in rapid succession. Double-
clicking is usually a short-cut to selecting and performing an action. For
example, double-clicking on a file name from File ⇒ Open will select
the file and open it.

Drag
To press, and continue to hold down, a mouse button while moving the
mouse. Dragging moves something (for example, an object or scroll bar).
400 Glossary

Drop-Down List
A list of selections obtained by clicking on the arrow to the right of a
selection field.

Entry Field
A field that is typically part of a dialog box or an editable object, which is
used for data entry. An entry field is editable when its background is
white.

Expression
An equation in an entry field that may contain input terminal names,
global variable names, math functions, and user-defined functions. An
expression is evaluated at run time. Expressions are allowed in Formula,
If/Then/Else, Get Values, Get Field, Set Field and Dialog
Box objects, and in I/O transaction objects.

Font
VEE allows you to change the font size and style of type used to display
text for various VEE objects, titles, and so forth.

Grayed Feature
A menu feature that is displayed in gray rather than black, indicating that
the feature is not active or not available. Dialog box items such as
buttons, checkboxes, or radio buttons may also be grayed.

Group Window
A group window in Microsoft Windows is a window that contains icons
for a group of applications. Each icon starts an application in the group.

Hypertext
A system of linking topics so that you can jump to a related topic when
you want more information. In online help systems, typically hypertext
links are designated with underlined text. When you click such text,
related information is presented.
Glossary 401

Icon
1. A small, graphical representation of a VEE object, such as the
representation of an instrument, a control, or a display.

2. A small, graphical representation of an application, file, or folder in the
Microsoft Windows operating system.

Main Window
A window that contains the primary work area in which you develop a
VEE program. The work area for this window resides in the work space
for the VEE window.

Maximize Button
A button on a UserObject, UserFunction, or the Main window, that
makes the UserObject, UserFunction, or Main window, occupy all
of the available work space.

Menu Bar
The bar at the top of the VEE window that displays the titles of the pull-
down menus from which you select commands and objects.

Minimize Button
A button on an object, or the VEE window, that iconifies the object, or
the VEE window.

Object
i. A graphical representation of an element in a program, such as an

instrument, control, display, or mathematical operator. An object is
placed in the work area and connected to other objects to create a
program.

ii. A data type used for ActiveX Automation and Controls.

Object Menu
The menu associated with an object that contains features that operate on
the object (for example, moving, sizing, copying, and deleting the
object). To obtain the object menu, click the object menu button at the
upper-left corner of the object, or click the right mouse button with the
pointer over the object.
402 Glossary

Object Menu Button
The button at the upper-left corner of an open view object, which
displays the object menu when you click it.

Open View
The representation of a VEE object that shows more detail than the
minimized view (icon). Most object open views have fields that allow
you to modify the operation of the object.

Panel Driver
An instrument control object that forces all the function settings in the
corresponding physical instrument to match the settings in the control
panel displayed in the open view of the object.

Panel View
The view of a VEE program, or of a UserObject or UserFunction,
that shows only those objects needed for the user to run the program and
view the resulting data. You can use panel views to create an operator
interface for your program.

Pin (or Pins)
An external connection point on an object to which you can attach a line.

Pointer
The graphical image that maps to the movement of the mouse. The
pointer allows you to make selections and provides you feedback on a
particular process underway. VEE has pointers of different shapes that
correspond to process modes, such as an arrow, crosshairs, and hourglass.

Pop-Up Menu
A menu that is raised by clicking the right mouse button. For example,
you can raise the Edit menu by clicking the right mouse button in an
empty area within the work area. Or you can raise the object menu by
clicking the right mouse button on an inactive area of an object.
Glossary 403

Preferences
Preferences are attributes of the VEE environment that you can change
using the Default Preferences button on the toolbar, or the menu
File ⇒ Default Preferences. For example, you can change the
default colors, fonts, and number format.

Program
In VEE, a graphical program that consists of a set of objects connected
with lines. The program typically represents a solution to an engineering
problem.

Propagation
The rules that objects and programs follow when they operate or run. See
also Data Flow.

Properties
Object properties are attributes of VEE objects that you can change using
Properties on the object menu, such as colors, fonts, and titles.

Pull-Down Menu
A menu that is pulled down from the menu bar when you position the
pointer over a menu title and click the left mouse button.

Scroll Arrow
An arrow that, when clicked on, scrolls through a list of data files or other
choices in a dialog box, or moves the work area.

Scroll Bar
A rectangular bar that, when dragged, scrolls through a list of data files or
other choices in a dialog box, or moves the work area.

Select
To choose an object, an action to be performed, or a menu item. Usually
you make a selection by clicking the mouse.

Selection Field
A field in an object or dialog box that allows you to select choices from a
drop-down list.
404 Glossary

Sequence Input Pin
The top pin of an object. When connected, execution of the object is held
off until the pin receives a container (is “pinged”).

Sequence Output Pin
The bottom pin of an object. When connected, this output pin is activated
when the object and all data propagation from that object finishes
executing.

Status bar
A line at the bottom of the VEE window in which information about the
current status of and information about VEE is displayed.

Status field
A field displaying information that cannot be edited. A status field looks
like an entry field, but has a gray background.

Terminal
The internal representation of a pin that displays information about the
pin and the data container held by the pin. Double-click a terminal to
view the container information.

Title Bar
The rectangular bar at the top of the open view of an object or window,
which shows the title of the object or window. You can turn off an object
title bar using Properties in the object menu.

Toolbar
The rectangular bar at the top of the VEE window which provides
buttons for quick access to frequently used commands. The buttons run
commands from menus such as File, Edit, View, Device, and Debug.
Glossary 405

Transaction
The specifications for input and output (I/O) used by certain objects in
VEE. Examples include the To File, From File and Direct I/O
objects. Transactions appear as phrases listed in the open view of these
objects.

UserObject
An object that can encapsulate a group of objects to perform a particular
purpose within a program. A UserObject allows you to use top-down
design techniques when building a program, and to build user-defined
objects that can be saved in a library and reused.

Views
VEE presents a program in one of two views: panel view which provides
a user interface for a VEE program, or detail view which provides a
window for developing a VEE program.

Windows 95, Windows 98, Windows NT 4.0, Windows 2000
Operating systems, developed by Microsoft Corporation, in which VEE
runs.

Work Area
An region within the Main window (also the UserObject and
UserFunction windows) in which you place VEE objects and connect
them together to create a VEE program.

Work Space
A region in the VEE window that contains the programming or editing
windows such as Main, UserObject, and UserFunction. These
windows contain work areas in which you place VEE objects and
connect them together.
406 Glossary

Index

Symbols
*.dll file extension, 339
*.h file extension, 336
_cdec1, 335
_stdcall, 335

Numerics
24 hour time stamp format, 210

A
Access Array => Get Values, 202
ActiveX

data type Variant, 170
add

objects, 29
terminal, 48
to panel, 306

address, interface, 131
Agilent VEE

closing program, 61
compiler, 341
data flow in program, 67
debugging, 100
exiting, 59
Go To, 106
graphical vs. text programs, 4
input pin connections, 78
object pins and terminals, 46
objects, 29
overview, 3
running programs, 54
save I/O configuration, 60
saving colors and fonts, 60
saving programs, 59
Show Data Flow, 68
Show Execution Flow, 68
starting VEE, 62
stopping, 61
storing test results, 200

alarm, creating operator interface, 313
Alphanumeric

displays, 188
Alphanumerics displays

using for debugging, 103

array
Arraystats UserFunction, 282
collector, 202
Collector object, 201
extracting elements with expressions,

203
extracting values from test results, 202
I/O Transaction box, 149
optimizing programs, 326
Scalar menu, 149
setting dimensions, 149
storing test results, 200

B
backward compatibility, 341
bar, scroll, 43
Beep

displays, 188
Beep object, 314
bitmaps, 294
breakpoints, 104
building a Record, 217
built-in operators, 172
button

iconize, 32
mouse, 22

buttons
Home button, 79
on toolbar, displaying text description,

24
Run button, 62

byte ordering, 132

C
C program example, 4
Call

Device, Call, Select Function, 277
call UserFunction, 274
call UserFunction from expression, 281
case sensitivity

VEE vs. MATLAB, 184
caution boxes in VEE programs

Agilent VEE
error messages in VEE, 100
Index-2

changing
object views, 32
preferences, 44
properties, 47
settings, 44
size of an object, 37

Clean Up Lines, 54
clearing the work area, 43
click, 22
cloning an object, 35
cloning vs. copy, 35
closing VEE, 61
collector, 202
Collector object, 201
colors

changing in waveform display, 193
saving with program, 60

compatibility mode, 341
compiled functions, 332

create, link, call, 275
compiler, 341
Complex data type, 169
Complex plane

displays, 188
configuration

Save I/O config with program, 60
configure

VXIplug&play driver, 158
configuring instruments, 129
Confirm (OK) object, 304
connecting objects, 52
connections between objects, show, 6
control pins, 109
controlling instruments, 125

Live Mode, 132
Coord data type, 169
copy vs.cloning, 35
copying an object, 35
copying multiple objects, 40
creating a UserFunction, 276
creating a UserObject, 76–82
customize

test data displays, 190
cutting an object, 36

D
data

Build Data, Record object, 279
Constant, Record, 280
creating data lines, 41
data types, 168
DataSets and data types, 226
delete data lines, 42
displaying test data, 188
flow, 70
From File object, add to program, 89
getting a Record field, 219
input, adding, 141
mathematically processing, 92
output, adding, 141
pins and objects, 46
propagation and flow, 65
reading from an instrument, 147
Records, 216
retrieving with From file object, 212
shape, definition, 168
Show Data Flow, 68
storing mixed data types, 216
To File object in program, 85
type, definition, 168
types supported with MATLAB, 185
using data shapes in program, 93
using data types in program, 92

data input pin, 46
data output pin, 46
Dataset

search and sort operations, 231
DataSets to store and retrieve records,

226–230
date & time, time stamp format, 209
debugging

adding Alphanumeric displays, 103
breakpoints, 104
examine data on line, 102
examining terminals, 103
line probe, 102
programs in VEE, 100
Show Data Flow, 100
Show Execution Flow, 101
step functions, 111
Index-3

default
changing preferences, 44

delete
"undoing" a delete, 36
data lines between objects, 42
object, 36

Delta markers, 192
description dialog boxes, 117
deselect objects, 38
detail view

button on icon bar, 291
definition, 6
displaying, 91

development environment
components, 23

Device
Call, Function, 277

Device => Import Library, 335
dialog box, 22

create for user input, 82
dimensions of array, 149
Direct I/O, 143–151

configured to read instrument, 149
object, 125, 144
transaction, 145

display
a record with Record Constant, 280
Detail view, 91
noise generator, 190
Panel view, 91
program connections (detail view), 6
waveform, 190

Display menu
Indicator, 293

displaying test data, 188
DLLs

(Dynamic Link Libraries), 335
calling from expression field, 337
PC plug-in boards, 127

document
description dialog boxes, 117
program using Save Documentation,

117
double-click, 22
download instrument state, 150

download string, 150
drag, 22
dragging an object, 33
drivers

ODAS, 127, 152
panel, 125
VXIplug&play, 125

duplicating an object, 35
Dynamic Link Libraries (DLLs), 335
Dynamic Link Library

calling from expression field, 337

E
edit

Clean Up Lines, 54
Edit menu, 41
objects, 41
UserFunction, 274

elements
extracting array, 203

end task (quitting VEE), 61
Enum data type, 170
EOF, avoiding errors in From DataSet,

230
error

input pins not connected, 78
errors

adding error output pins, 109
debugging programs, 100
Go To, 106
View => Last Error, 106

evaluating expressions in Formula
object, 176

EXECUTE I/O transaction, 206
execution

data flow in VEE program, 67
modes, 341
order in program, 110
Show Data flow, 68
Show Execution Flow, 68

execution modes
optimizing programs, 327

exiting VEE, 61
expression field

calling DLLs, 337
Index-4

expressions
calling UserFunctions, 281
Formula object, 178
send expression list to instrument, 146

F
field

getting a field from a Record, 219
file

sending real array to, 210
sending time stamp to, 209
To/From file objects, 204

File menu
Default Preferences, 293
Save As..., 59
Save Documentation..., 117

files
program, 59

fill bars, 293
flow

Show Data Flow, 68
Show Execution Flow, 68

Flow => Confirm (OK), 304
flow, data, 70
fonts

saving with program, 60
format

I/O transaction, 206
Formula object, 94–96, 175

creating expressions, 175
evaluate expression, 176
evaluate simple expression, 176
multiple expressions, 178
using predefined functions, 94

Formula objects
line breaks, 178

frequency
displays, 189

From File
adding object to program, 89

From File Object, 214
Function

compiled function, 275, 332
menu, 139
Select Function in Device Call, 277

Function & Object Browser, 172
function keys, using in programs, 301

G
gateway, 131
Get field object, 219
Get Variable object, 114
global variables

optimizing programs, 330
setting and getting, 114
setting before using, 116

Go To, 106
GPIB, 131
GPIO, 131

H
Help

finding menu location for object, 98
Object Menu, 33
online, 22, 26
online Tutorials, 97
system, 28

HH time stamp format, 210
highlight (select) objects, 38
Home button to position objects, 79

I
I/O

direct object, 125
To File object, 205
transaction dialog box, 205
transaction format (syntax), 206
understanding I/O transactions, 205

I/O configuration, save, 60
I/O libraries, 125
I/O Transaction box

format, 206
select array dimension, 149

I/O transaction timeout, 132
icons

changing, 294
displaying text description, 24
icon view of object, 32
iconic view, 32
Index-5

improving execution time, 327
minimize button on object, 32
Run button on tool bar, 62

Indicator
displays, 188

input pins
data, 46
errors about, 78
output, 46
sequence, 46

insert
UserObject in program, 76

Instrument Manager, 129
instruments

adding physical instrument, 137
configuring, 129
controlling locally or remotely, 131
reading data from, 147
selecting for use in program, 135
sending expression list to, 146
sending text commands, 144

Int16 data type, 168
Int32 data type, 169
interface

GPIB, 131
GPIO, 131
Serial, 131
VXI, 131

L
lab program

using Records, 216
lab programs

add a noise generator, 65
add an amplitude input, 68
alarm, 313
creating a dialog box, 82
creating a panel view, 89
creating an array of test results, 201
display waveform, 52
generate a random number, 113
mathematically processing data, 92
Real64 slider, 68
search and sort with DataSets, 231
setting and getting global variable, 114

standard deviation, 173
using DataSets, 226
view data flow and propagation, 65

Label
displays, 188

learn string, 150
libraries

DLLs (Dynamic Link Libraries), 335
UserFunction, 275

line breaks in Formula objects, 178
line probe, 102
lines

creating data lines between objects, 41
deleting lines between objects, 42
Edit => Clean Up Lines, 54

live mode, 132
Logging Alphanumeric

displays, 188

M
Main window

description, 24
displaying in VEE, 63

managing the work space, 62
math

Device => Function & Object
Browser, 172

performing math on arrays, 326
mathematically processing data, 92
MATLAB, 181–185

case sensitivity, 184
data types supported, 185
feature, 171
graph, 183
in Function & Object Browser, 173
including Script object in VEE

program, 184
object in VEE program, 182
overview, 13
Signal Processing Toolbox, 14
support information, 17
uses of MATLAB Script object, 181

menu
bar, 24
object menu, 32
Index-6

pop-up, 33
selecting, 22

menus
Device => Import Library, 335
Display => Indicator, 293
File => Default Preferences (color and

font selection), 293
File => Save As..., 59
File =>Save Documentation, 117
finding locations in online Help, 98
Flow => Confirm (OK), 304
Function & Object Browser, 172
I/O => Instrument Manager..., 129
object menu, 32
Properties => Icon, 294
Properties, Title, 37

meters, 293
Microsoft Windows, 22
minimize object, 32
mixed data types, storing, 216
modes

compatibility, 341
execution, 341

mouse button, 22
move

an object, 33
data between objects, 46
entire work area, 43
objects in Panel view, 306

N
naming

changing the name of an object, 37
nesting function calls, 328
Noise Generator

adding object, 65
displaying a waveform, 190

Note Pad
displays, 188

numbers
Real64 slider, 68

O
object data type, 170

object menu
selecting, 32
selecting when title bar is hidden, 305

objects
"undo" or paste a deleted object, 36
adding, 29
adding to panel, 306
aligning in Panel view, 300
Beep, 314
changing name, 37
changing parameters, 55, 58
changing title, 37
changing views, 32
cloning, 35
Confirm (OK), 304
connecting, 52
copy, 35
creating data lines, 41
creating UserFunction, 276
cutting, 36
Data, Build Data, Record, 279
Data, Constant, Record, 280
deleting, 36
deleting data lines, 42
deselecting, 38
Device => Function & Object

Browser, 94
direct I/O, 125
display Help about, 98
dragging, 33
duplicating, 35
editing, 41
execution order in program, 110
finding menu location for in online

Help, 98
Formula, 175
Get Field, 219
Get variable, 114
Help menu, 33
iconizing for performance, 327
icons, 32
input and output pins, 46
location information, 34
MATLAB, 183
menu, 32
Index-7

minimizing, 32
move all, 43
moving, 33
moving in panel view, 306
multiple objects, copying, 40
naming, changing name, 37
Object data type, 170
open view of object, 32
order of operation of pins, 108
pasting, 36
pins and terminals, 46
positioning in window, 79
radio buttons, 307
reducing number of objects in

programs, 328
resizing, 37
retrieving data using From File object,

214
select object menu, 32
selecting, 38
Set Variable, 114
Show Title Bar turned off, 305
sizing, 37
terminals, 48
To File, 211
UnBuild Record, 224
UserFunction, 274

ODAS driver, 127
ODAS drivers, 152
online

Tutorials, 97
online help, 22, 26
open

VEE, 62
view of object, 32

Operator interface
create Panel view, 89

operator interface, creating, 89
Operator interfaces

color alarms, 293
controls (toggles), 299
fill bars, 293
for a search operation, 232
importing bitmaps, 294
meters, 293

panel view of program, 290
radio buttons, 307
selecting colors and fonts, 293
slider, Real64, 68
softkeys and function keys, 301
tanks, 293
thermometers, 293

operators
built-in, 172

optimizing programs, 326

P
Panel driver, 125, 136, 138–142
Panel view

adding object to, 290
adding objects, 306
aligning objects, 300
Beep object, 314
button on icon bar, 291
create operator interface, 89
displaying, 91
moving objects, 306
radio buttons, 307
snap-to-grid, 300
softkeys and function keys, 301
switching to Detail view, 91

panel view, creating, 89
parameters

changing, 55, 58
pasting an object, 36
Pause, 55
PC plug-in boards, 127, 152, 156
PComplex data type, 169
physical instrument

adding to configuration, 137
Pictures

displays, 188
pins

adding terminals, 48
control pins, 109
deleting a terminal, 51
editing a terminal, 49
input and output, 46
order of operation in object, 108

pixels, locating objects exactly, 34
Index-8

placement
moving objects in panel view, 291

Polar Plot
displays, 188

pop-up menu, 33
pop-up menus

Edit, 41
pop-up panels, 304
preferences

changing, 44
printers, using with VEE, 58
printing the screen, 58
product support information, 16
Program Explorer, 24
programs

alarm lab, 313
creating, 52, 54
data flow, 67
debugging, 100
exiting VEE, 61
files, 59
Go To, 106
icon view of objects, 32
including sound with Beep object, 314
open view of objects, 32
propagation and data flow, 65
running, 54
save colors and fonts, 60
save I/O configuration, 60
saving, 59
selecting instruments to use, 135
start VEE, 62
stepping through, 111
storing test results, 200
subprograms, 274
using breakpoints, 104
VEE, 70

propagation and data flow, 65
properties

changing, 47
Properties menu

Icon, 294

Q
quitting VEE, 61

R
radio buttons, 307
random number

generating in lab exercise, 113
READ I/O transaction, 206
reading data from instrument, 147
real array, sending to file, 210
Real32 datat type, 169
Real64 data type, 169
Real64 slider, 68
Record

avoiding match errors with EOF, 230
building, 217
getting a field, 219
set field, 221
sort operation on a field, 238
storing and retrieving from DataSet,

226
unbuilding, 224
using DataSets to store and retrieve,

226
using to store mixed data types, 216

record
Data, Build Data, Record object, 279

Record Constant, 280
Record data type, 170
resize objects, 37
resolving errors, 106
restarting VEE, 62
Resume, 55
retrieving data with From file object,

212
Run button on tool bar, 62
run program, 54
runtime version, 10

S
Save

a program, 59
Save Documentation menu, 117

scalar values, definition, 200
screen colors, 303
scroll bar, 43
search and sort with DataSet, 231
Select Function example, 278
Index-9

selecting
menus, 22
object menu, 32
objects, 38

Sequence pins, 108
sequence pins, 46
serial interface, 131
set field in Record, 221
Set Variable object, 114
settings

changing, 44
shadows on selected objects, 38
shortcuts

add terminal, 48
displaying text description, 24
Pause, 55
Resume, 55
Run, 55
Step Into, 55

show
connections between objects, 6
Program Explorer, 62
Show Data Flow, 68
Show Execution Flow, 68
terminals, 47

Signal Processing Toolbox, MATLAB,
14

size
resizing an object, 37
sizing objects in panel view, 291

slider
Real64 slider, 68

snap to grid, 300
softkeys, using in Panel view, 301
sort operation on a Record field, 238
sound in program

Beep object, 314
Spectrum

displays, 189
Spectrum data type, 169
standard deviation lab, 173
starting VEE, 23
status bar

display, 24
locating objects exactly, 34

Step Into, 55, 111
Step Out, 111
Step Over, 111
stop VEE, 61
storing mixed data types, 216
storing test results, 200–203
string

download string, 150
learn string, 150
upload string, 150

Strip Chart
displays, 189

subprograms
UserObjects and UserFunctions, 274

support
Agilent VEE support, 16
MATLAB, 17

supported systems, 22
switching view

detail, 91
systems

supported, 22

T
tanks, 293
terminals, 46

adding, 48
deleting, 51
examining, 103
obtaining information, 49
showing terminal labels, 47

test results
extracting values from array, 202

test results, storing in arrays, 200–203
text

sending text string to file, 208
Text data type, 170

text command, sending to instrument,
144

thermometers, 293
threads, 110
time stamp, sending to file, 209
title

bar, 24
changing title of object, 37
Index-10

To File object, 211
add to program, 85

To/From file objects, 204–215
toggle switches, 299
toolbar, 22, 24

displaying tooltips, 24
transaction, Direct I/O, 145
triadic operator, 330

U
UInt8 data type, 168
unbuild Record, 224
undo

deleted object, 36
upload instrument state, 150
upload string, 150
URLs

Web addresses for MATLAB, 17
Web addresses for VEE, 16

user input
create dialog box, 82

user interface, 22
create panel view, 89

UserFunction
ArrayStats, 282
create, call, edit, transfer, 274

UserFunctions
calling from expression, 281
differences from UserObjects, 275

UserObject
creating, 76–82
differences from UserFunction, 275
icon view, 63
minimized, 63
open view, 63

using ODAS drivers, 152

V
Variant data type, 170
VEE

compiler, 341
debugging, 100
error messages in programs, 100
Go To, 106

input pin connections, 78
interacting with, 22
online Help, 28
printing, 58
Program Explorer, 24
programming with, 70
running programs, 54
save I/O configuration, 60
saving colors and fonts, 60
Show Data Flow, 68
Show Execution Flow, 68
starting, 23
storing test results, 200
work area, 24
work space, 24

view
detail, 6, 291
icon view of object, 32
open view of object, 32
panel, 91, 291

VXI, 131
VXIplug&play driver, 158–162
VXIplug&play drivers, 125

W
WAIT I/O transaction, 206
waveform

data type, 169
display, 190
display waveform program, 52
display, changing color of trace, 193
display, changing X and Y scales, 191
display, Delta markers, 192
displays, 189
displays, zooming in, 191

Web URLs
Agilent VEE, 16
MATLAB, 17

Welcome menu in online Help, 97
window

Main, 24
work area, 24

clearing, 43
move all objects, 43
moving, 43
Index-11

work space, 24
managing it, 62

WRITE I/O transaction, 206

X
X vs. Y plot

displays, 189
XY Trace

displays, 189

Z
zooming in on waveform, 191
Index-12

	Introduction
	Overview of Agilent VEE
	Advantages of Using Agilent VEE for Test Development
	Creating Programs in Agilent VEE
	Creating Operator Interfaces in Agilent VEE
	Leveraging Existing Test Programs with Agilent VEE
	Controlling Instruments with Agilent VEE
	Improving Test Capabilities with Agilent VEE

	Installing and Learning About Agilent VEE
	Installing Agilent VEE and I/O Libraries
	Learning about Agilent VEE
	Ordering Free Evaluation Software

	MATLAB Script Overview
	Signal Processing Toolbox
	About Full-Featured MATLAB

	Obtaining Agilent VEE Support
	Obtaining Information on the World Wide Web

	Sources of Additional Information for MATLAB

	1 Using the Agilent VEE Development Environment
	Overview
	Interacting with Agilent VEE
	Supported Systems
	The Mouse and the Menus
	Starting Agilent VEE
	The Agilent VEE Window
	Getting Help

	Working with Objects
	Adding Objects to the Work Area
	Changing Object Views
	Selecting an Object Menu
	Moving an Object
	Duplicating (or Cloning) an Object
	Copying an Object
	Deleting (Cutting) an Object
	Pasting an Object (“Undoing” a Cut)
	Changing the Size of an Object
	Changing the Name (Title) of an Object
	Selecting or Deselecting Objects
	Selecting Several Objects
	Selecting/Deselecting All Objects
	Copying Multiple Objects
	Editing Objects
	Creating Data Lines Between Objects
	Deleting Data Lines Between Objects
	Moving the Entire Work Area
	Clearing the Work Area
	Changing Default Preferences

	Understanding Pins and Terminals
	Adding a Terminal
	Editing Terminal Information
	Deleting a Terminal

	Connecting Objects to Make a Program
	Running a Program
	Changing Object Properties
	Printing the Screen
	Saving a Program
	Exiting (Quitting) Agilent VEE
	Re-Starting Agilent VEE and Running a Program
	Managing Multiple Windows in the Workspace

	How Agilent VEE Programs Work
	Chapter Checklist

	2 Agilent VEE Programming Techniques
	Overview
	General Techniques
	Using Online Help
	Using the Help Facility
	Displaying Help about an Object
	Finding the Menu Location for an Object
	Other Practice Exercises Using the Help Facility

	Debugging Programs in Agilent VEE
	Showing Data Flow
	Showing Execution Flow
	Examining Data on a Line
	Examining Terminals
	Using the Alphanumeric Displays for Debugging
	Using Breakpoints
	Resolving Errors
	Using the Go To Button to Locate an Error
	Following the Order of Events Inside an Object
	Following the Execution Order of Objects in a Program
	Stepping Through a Program

	Practice Programs
	Documenting Agilent VEE Programs
	Documenting Objects with Description Dialog Boxes
	Generating Documentation Automatically

	Chapter Checklist

	3 Easy Ways to Control Instruments
	Overview
	Panel Drivers
	Direct I/O Object
	PC Plug-in Boards with ODAS Driver
	PC Plug-in Boards with I/O Library
	VXIplug&play Drivers

	Configuring an Instrument
	Selecting an Instrument to Use in a Program
	Adding the Physical Instrument to the Configuration

	Using a Panel Driver
	Moving to Other Panels on the Same Driver
	Adding Inputs and/or Outputs to a Panel Driver
	Deleting Data Input or Output Terminals
	On Your Own

	Using Direct I/O
	Sending a Single Text Command to an Instrument
	Sending an Expression List to an Instrument
	Reading Data From an Instrument
	Uploading and Downloading Instrument States

	Using PC Plug-in Boards
	Using ODAS Drivers
	Data Translation's Visual Programming Interface (VPI)
	Amplicon
	ComputerBoards PC Plug-ins
	Meilhaus Electronic ME-DriverSystem

	Using a VXIplug&play Driver
	Other I/O Features
	Chapter Checklist

	4 Analyzing and Displaying Test Data
	Overview
	Agilent�VEE Data Shapes and Data Types
	Agilent VEE Analysis Capabilities
	Using Built-In Math Objects
	Accessing a Built-in Operator or Function

	Creating Expressions with the Formula Object
	Evaluating an Expression with the Formula Object
	Using an Agilent�VEE Function in the Formula Object
	On Your Own

	Using MATLAB Script in Agilent VEE
	Including a MATLAB Script Object in Agilent VEE
	Working with Data Types

	Displaying Test Data
	Customizing Test Data Displays
	Displaying a Waveform
	Changing the X and Y Scales
	Zooming in on Part of the Waveform
	Adding Delta Markers to the Display
	Changing the Color of the Trace
	For Additional Practice

	Chapter Checklist

	5 Storing and Retrieving Test Results
	Overview
	Using Arrays to Store Test Results
	Using the To/From File Objects
	Understanding I/O Transactions
	I/O Transaction Format
	Sending a Text String to a File
	Sending a Time Stamp to a File
	Sending a Real Array to a File
	Retrieving Data with the From File Object

	Using Records to Store Mixed Data Types
	Building a Record
	Getting a Field From a Record
	Setting a Field in a Record
	Unbuilding a Record in a Single Step

	Using DataSets to Store and Retrieve Records
	Storing and Retrieving a Record from a DataSet

	Customizing a Simple Test Database
	Performing a Search Operation With DataSets
	Creating an Operator Interface for a Search Operation
	Performing a Sort Operation on a Record Field

	Chapter Checklist

	6 Creating Reports Easily Using ActiveX
	Overview
	ActiveX Automation in Agilent VEE
	Listing ActiveX Automation Type Libraries
	Creating and Using ActiveX Programs with Agilent VEE
	Performing Operations Using ActiveX Statements
	Using CreateObject and GetObject

	Sending Agilent VEE Data to MS Excel
	Creating an Agilent VEE to MS Excel Template
	On Your Own
	Extending Capabilities With MS Excel

	Using MS Word for Agilent VEE Reports
	Chapter Checklist

	7 Using Agilent VEE Functions
	Overview
	Using Functions
	Defining an Agilent VEE Function
	The Differences Between UserObjects and UserFunctions
	Creating a UserFunction
	Editing a UserFunction
	Calling a UserFunction from an Expression
	Generating a Call to a UserFunction

	Chapter Checklist

	8 Using Operator Interfaces
	Overview
	Key Points Concerning Operator Interfaces
	Creating an Operator Interface
	Moving Between Panel View and Detail View
	Customizing an Operator Interface

	Using Operator Interface Objects
	Colors, Fonts, and Indicators
	Graphic Images
	Displaying a Control for Operator Input
	Displaying a Dialog Box for Operator Input
	Displaying a Toggle Control for the Operator
	Aligning Objects in the Operator Interface
	Creating an Operator Interface for the Keyboard Only
	Selecting Screen Colors
	Displaying a Pop-Up Panel During Execution

	Common Tasks In Creating Operator Interfaces
	Chapter Checklist

	9 Optimizing Agilent VEE Programs
	Overview
	Basic Techniques for Optimizing Programs
	Perform Math on Arrays Whenever Possible
	Make Objects into Icons Whenever Possible
	Reduce the Number of Objects in Programs
	Other Ways to Optimize Agilent VEE Programs

	Overview of Compiled Functions
	Benefits of Using Compiled Functions
	Design Considerations in Using Compiled Functions
	Guidelines in Using Compiled Functions

	Using Dynamic Link Libraries
	Integrating a DLL into an Agilent VEE Program
	An Example Using a DLL

	Agilent VEE Execution Modes
	The Agilent VEE Compiler
	Changing the Execution Mode
	Effect of Changing the Execution Mode

	Chapter Checklist

	A Additional Lab Exercises
	General Programming Techniques
	Apple Bagger
	Testing Numbers
	Collecting Random Numbers
	Random Number Generator
	Using Masks

	Using Strings and Globals
	Manipulating Strings and Globals

	Optimizing Techniques
	UserObjects
	Random Noise UserObject

	Agilent VEE UserFunctions
	Using UserFunctions

	Creating Operator Panels and Pop-ups
	Working with Files
	Moving Data To and From Files

	Records
	Manipulating Records

	Glossary
	Index

